Skip to main content
Log in

Plants and microgravity: Patterns of microgravity effects at the cellular and molecular levels

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The article discusses the effects of real and simulated microgravity on certain cell components and processes, using, among others, the recently received new data. A substantial importance is given to the effect of microgravity on the state of cytoplasmic membrane, transcriptome and proteome, cell wall, and Ca2+-signaling in plant cells that are not specialized for the perception of gravity. The authors underline the exceptional significance of data about the organ-specific reactions of transcriptome and proteome to spaceflight conditions, which suggest novel integrated approaches to the solution of basic and applied problems in plant space biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferl, R.J., Wheeler, R., Levine, H.G., and Paul, A.L., Plants in space, Curr. Opin. Plant. Biol., 2002, vol. 5, pp. 258–263.

    Article  PubMed  Google Scholar 

  2. Ferl, R.J., Koh, J., Denison, F., and Paul, A.L., Spaceflight induces specific alterations in the proteomes of Arabidopsis, Astrobiology, 2015, vol. 15, no. 1, pp. 32–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wheeler, R.M., Plants for human life support in space: from Myers to Mars, Gravit. Space Biol., 2010, vol. 23, no. 2, pp. 25–35.

    Google Scholar 

  4. Zhang, Y., Wang, L., Xie, J., and Zheng, H., Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft, Planta, 2015, vol. 241, no. 2, pp. 475–488.

    Article  CAS  PubMed  Google Scholar 

  5. Merkys, A.I. and Laurinavichius, R.S., Complete cycle of individual development of Arabidopsis thaliana (L.) Heynh. plants on board the Salyut-7 orbital station, Dokl. Akad. Nauk SSSR, 1983, vol. 271, pp. 509–512.

    Google Scholar 

  6. Yano, S., Kasahara, H., Masuda, D., Tanigaki, F., Shimazu, T., Suzuki, H., Karahara, I., Soga, K., Hoson, T., Tayama, I., Tsuchiya, Y., and Kamisaka, S., Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station, Adv. Space Res., 2013, vol. 51, no. 5, pp. 780–788.

    Article  Google Scholar 

  7. Musgrave, M.E., Kuang, A., Xiao, Y., Stout, S.C., Bringham, G.E., Briarty, L.G., Levenskikh, M.A., Sychev, V.N., and Podolski, I.G., Gravity independence of seed-to-seed cycling in Brassica rapa, Planta, 2000, vol. 210, no. 3, pp. 400–406.

    Article  CAS  PubMed  Google Scholar 

  8. Kuang, A., Popova, A., McClure, G., and Musgrave, I.E., Dynamics of storage reserve deposition during Brassica rapa l. Pollen and seed development in microgravity, Int. J. Plant Sci., 2005, vol. 166, no. 1, pp. 85–96.

    Article  CAS  PubMed  Google Scholar 

  9. Bingham, G.E., Levinskikh, M.A., Sytchev, V.N., and Podolsky, I.G., Effects of gravity on plant growth, J. Gravit. Physiol., 2000, vol. 7, no. 2, pp. 5–8.

    Google Scholar 

  10. Sychev, V.N., Levinskikh, M.A., Gostimsky, S.A., Bingham, G.E., and Podolsky, I.G., Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the international space station, Acta Astronaut., 2007, vol. 60, nos. 4–7, pp. 426–432.

    Article  Google Scholar 

  11. Takahashi, H., Fujii, N., Kamada, M., Higashitani, A., Yamazaki, Y., Kobayashi, A., Takano, M., Yamasaki, S., Sakata, T., Mizuno, H., Kaneko, Y., Murata, T., Kamigaichi, S., Aizawa, S., Yoshizaki, I., Shimazu, T., and Fukui, K., Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings, Biol. Sci. Space, 2000, vol. 14, no. 2, pp. 64–74.

    Article  CAS  PubMed  Google Scholar 

  12. Paul, A.L., Zupanska, A.K., Ostrow, D.T., Zhang, Y., Sun, Y., Li, J.L., Shanker, S., Farmerie, W.G., Amalfitano, C.E., and Ferl, R.J., Spaceflight transcriptomes: unique responses to a novel environment, Astrobiology, 2012, vol. 12, no. 1, pp. 40–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kordyum, E.L., Plant cell gravisensitivity and adaptation to microgravity, J. Plant Biol., 2014, vol. 16, no. Suppl. 1, pp. 79–90.

    Article  Google Scholar 

  14. Kordyum, E.L., Biology of plant cells in microgravity and under clinostating, Int. Rev. Cytol., 1997, vol. 171, pp. 1–78.

    Article  CAS  PubMed  Google Scholar 

  15. Sieberer, B.J., Kieft, H., Franssen-Verheijen, T., Emons, A.M., and Vos, J.W., Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space, Planta, 2009, vol. 230, no. 6, pp. 1129–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Halstead, T.W. and Dutcher, F.R., Plants in space, Annu. Rev. Plant. Physiol., 1987, vol. 38, pp. 317–345.

    Article  CAS  PubMed  Google Scholar 

  17. Claasen, D.E. and Spooner, B.S., Impact of altered gravity on aspects of cell biology, Int. Rev. Cytol., 1994, vol. 156, pp. 301–373.

    Article  Google Scholar 

  18. Paul, A.L., Popp, M.P., Gurley, W.B., Guy, C., Norwood, K.L., and Ferl, R.J., Arabidopsis gene expression patterns are altered during spaceflight, Adv. Space Res., 2005, vol. 36, no. 7, pp. 1175–1181.

    Article  Google Scholar 

  19. Salmi, M.L. and Roux, S.J., Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii, Planta, 2008, vol. 229, no. 1, pp. 151–159.

    Article  CAS  PubMed  Google Scholar 

  20. Manzano, A.I., Herranz, R., Manzano, A., van Loon, J.W.A., and Medina, F.J., Early effects of altered gravity environments on plant cell growth and cell proliferation: characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system, Front. Astron. Space Sci. Plant Cells Altered Gravity, 2016, vol.3.

  21. Demkiv, O.T., Kordyum, E.L., Tairbekov, M.G., Sack, F.D., Kern, V.D., and Kardash, O.R., The growth movement of moss protonemata under clinostatic and microgravity conditions, Aviasp. Ecol. Med., 1999, vol. 33, no. 3, pp. 31–34.

    CAS  Google Scholar 

  22. Wolverton, S.C. and Kiss, J.Z., An update on plant space biology, Gravit. Space Biol. Bull., 2009, vol. 22, pp. 13–20.

    Google Scholar 

  23. Millar, K.D., Johnson, C.M., Edelmann, R.E., and Kiss, J.Z., An endogenous growth pattern of roots is revealed in seedlings grown in microgravity, Astrobiology, 2011, vol. 11, no. 8, pp. 787–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paul, A.L., Wheeler, R.M., Levine, H.G., and Ferl, R.J., Fundamental plant biology enabled by the space shuttle, Am. J. Bot., 2013, vol. 100, no. 1, pp. 226–234.

    Article  PubMed  Google Scholar 

  25. Kittang, A.I., Iversen, T.H., Fossum, K.R., Mazars, C., Carnero-Diaz, E., Boucheron-Dubuisson, E., Le Disquet, I., Legué, V., Herranz, R., Pereda-Loth, V., and Medina, F.J., Exploration of plant growth and development using the European modular cultivation system facility on the International Space Station, Plant Biol. (Stuttg.), 2014, vol. 16, no. 3, pp. 528–538.

    Article  Google Scholar 

  26. Paul, A.L. and Ferl, R.J., Spaceflight exploration in plant gravitational biology, Methods Mol. Biol., 2015, vol. 1309, pp. 285–305.

    Article  PubMed  Google Scholar 

  27. Sytnik, K.M., Kordyum, V.A., Kordyum, E.L., Grabskyy, V.G., Manko, V.G., Nedukha, O.M., and Popova, A.F., Microorganisms in Space Flight, Kyiv: Naukova Dumka, 1983.

    Google Scholar 

  28. Polulyakh, Yu.A., The content of phospholipids and fatty acids in the plasma membrane of pea root cells by clinorotation, Dokl. Akad. Nauk USSR, 1988, no. 10, pp. 67–69.

    Google Scholar 

  29. Polulyakh, Yu.A., Zhadko, S.I., and Klimchuk, D.A., Plant cell plasma membrane structure and properties under clinostating, Adv. Space Res., 1989, vol. 9, pp. 71–74.

    Article  Google Scholar 

  30. Hanke, W., Planar lipids bilayers as model systems to study the interaction of gravity with biological membranes, in 30th Cospar Scientific Assembly, Hamburg, Germany, 1994, p.283.

    Google Scholar 

  31. Goldermann, M. and Hanke, W., Ion channel are sensitive to gravity changes, Microgravity Sci. Technol., 2001, vol. 13, no. 1, pp. 35–38.

    Article  CAS  PubMed  Google Scholar 

  32. Sieber, M., Hanke, W., and Kohn, F.P.M., Modification of membrane fluidity by gravity, Open J. Biophys., 2014, vol. 4, no. 4, pp. 105–111.

    Article  CAS  Google Scholar 

  33. Kordyum, E.L., Nedukha, O.M., Grakhov, V.P., Vorobyova, T.V., Klymenko, O.M., and Zhupanov, I.V., Study of the influence of simulated microgravity on the cytoplasmic membrane lipid bilayer of plant cells, Kosmichna Nauka Technologia, 2015, vol. 21, no. 3, pp. 40–47.

    Article  Google Scholar 

  34. Nedukha, O.M., Kordyum, E.L., Grakhov, V.P., et al., Fatty acids and lipids content in Pisum sativum seedlings plasmalemma under clinorotation, in Proc. Plant Biology and Technology International Conf., Almaty, Kazakhstan, 2014, p.176.

    Google Scholar 

  35. Mongrand, S., Morel, J., Laroche, J., Claverol., S., Carde, J.P., Hartmann, M.A., Bonneu, M., Simon-Plas, F., Lessire, R., and Bessoule, J.J., Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane, J. Biol. Chem., 2004, vol. 279, no. 35, pp. 36277–36286.

    Article  CAS  PubMed  Google Scholar 

  36. Borner, G.H.H., Sherrier, D.J., Weimar, T., Michaelson, L.V., Hawkins, N.D., MacAskill, A., Napier, J.A., Beale, M.H., Lilley, K.S., and Dupree, P., Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts, Plant Physiol., 2005, vol. 137, no. 1, pp. 104–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kraft, M.L., Plasma membrane organization and function: moving past lipid rafts, Mol. Biol. Cell, 2013, vol. 24, no. 18, pp. 2765–2768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Demir, F., Horntrich, C., Blachutzik, J.O., Scherzer, S., Reinders, Y., Kierszniowska, S., Schulze, W.X., Harms, G.S., Hedrich, R., Geiger, D., and Kreuzer, I., Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 20, pp. 8296–8301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seifert, G.J., Xue, H., and Acet, T., The Arabidopsis thaliana FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth, Ann. Bot., 2014, vol. 114, no. 6, pp. 1125–1133.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lingwood, D. and Simons, K., Lipid rafts as a membrane-organizing principle, Science, 2010, vol. 327, no. 5961, pp. 46–50.

    Article  CAS  PubMed  Google Scholar 

  41. Mazars, C., Brie’re, C., Grat, S., Pichereaux, C., Rossignol., M., Pereda-Loth, V., Eche, B., Boucheron-Dubuisson, E., Le Disquet, I., Medina, F.J., Graziana, A., and Carnero-Diaz, E., Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station, PLoS One, 2014, vol. 9, no. 3, pp. 1–18.

    Article  Google Scholar 

  42. Klymenko, O.M., Zhupanov, I.V., Kordyum, E.L., and Vorob’eva, T.V., The influence of simulated microgravity on rafts fatty acids composition from plant cells cytoplasmic membranes, in 16 Ukr. Conf. Space Res., Odessa, 2016, p.60.

    Google Scholar 

  43. Bohnert, H.J., Gong, Q., Li, P., and Ma, S., Unraveling abiotic stress tolerance mechanisms—getting genomics going, Curr. Opin. Plant Biol., 2006, vol. 9, no. 2, pp. 180–188.

    Article  CAS  PubMed  Google Scholar 

  44. Correll, M.J., Pyle, T.P., Millar, K.D., Sun, Y., Yao, J., Edelmann, R.E., and Kiss, J.Z., Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes, Planta, 2013, vol. 238, no. 3, pp. 519–533.

    Article  CAS  PubMed  Google Scholar 

  45. Clement, J.Q., Gene Expression Microarrays in Microgravity Research: Toward the Identification of Major Space Genes, INTECH Open Acc. Publ., 2012.

    Google Scholar 

  46. Paul, A.L., Manak, M.S., Mayfield, J.D., Reyes, M.F., Gurley, W.B., and Ferl, R.J., Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana, Astrobiology, 2011, vol. 11, no. 8, pp. 743–758.

    Article  CAS  PubMed  Google Scholar 

  47. Aubry-Hivet, D., Nziengui, H., Rapp, K., Oliveira, O., Paponov, I.A., Li, Y., Hauslage, J., Vagt, N., Braun, M., Ditengou, F.A., Dovzhenko, A., and Palme, K., Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots, Plant Biol. (Stuttg.), 2014, vol. 16, suppl. 1, pp. 129–141.

    Article  Google Scholar 

  48. Zupanska, A.K., Denison, F.C., Ferl, R.J., and Paul, A.L., Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana, Am. J. Bot., 2013, vol. 100, no. 1, pp. 235–248.

    Article  CAS  PubMed  Google Scholar 

  49. Kozeko, L.Y. and Kordyum, E.L., The stress protein level under clinorotation in context of the seedling developmental program and the stress response, Microgravity Sci. Technol., 2006, vol. 18, nos. 3–4, pp. 254–256.

    Article  CAS  Google Scholar 

  50. Paul, A.L., Zupanska, A.K., Schultz, E., and Rerl, R.J., Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight, BMC Plant Biol., 2013, vol. 13, pp. 112–122.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Keegstra, K., Plant cell walls, Plant Physiol., 2010, vol. 154, no. 2, pp. 483–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cowles, J.R., Scheld, H.W., Lemay, R., and Petersen, C., Growth and lignification in seedlings exposed to eight days of microgravity, Ann. Bot., 1984, vol. 54, no. Suppl. 3, pp. 33–48.

    Article  CAS  PubMed  Google Scholar 

  53. Levine, L.H., Heyeng, A.G., Levine, H.G., Choi, J.W., Davin, L.B., Krikorian, A.D., and Lewis, N.G., Cellwall architecture and lignin composition of wheat developed in a microgravity environment, Phytochemistry, 2001, vol. 57, pp. 835–846.

    Article  CAS  PubMed  Google Scholar 

  54. Cowles, J.R., Le May R., Jahns G., Scheld H.W., Peterson C., Lignification in young plant seedlings grown on earth and aboard the space shuttle, in Plant Cell Wall Polymers: Biogenesis and Biodegradation, Lewis, N.G. and Paice, M.G., Ed., 1989, pp. 203–213.

    Chapter  Google Scholar 

  55. Legue, V., Cabane, M., Ladouce, N., Dauphin, A., Grima-Pettenati, J., and Lapierre, C., The impact of gravity on wood formation in Eucalyptus globulus: experiences in simulated microgravity, in 26th Ann. Int. Gravitat. Physiology Meeting, Cologne, Germany, 2005, p.21.

    Google Scholar 

  56. Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., and Kamisaka, S., Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space, Plant Cell Physiol., 2002, vol. 43, no. 9, pp. 1067–1071.

    Article  CAS  PubMed  Google Scholar 

  57. Hoson, T., Soga, K., Wakabayashi, K., Kamisaka, S., and Tanimoto, E., Growth and cell wall changes in rice roots during spaceflight, Plant Soil, 2003, vol. 255, no. 1, pp. 19–26.

    Article  CAS  PubMed  Google Scholar 

  58. Hoson, T., Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space, Life, 2014, vol. 4, no. 2, pp. 205–216.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Laurinavichius, R.S., Yaroschus, A.V., and Marchukajtis, A., Metabolism of pea plants grown under space flight conditions, in Biologicheskie issledovaniya na orbitalnikh stanziyakh Salyut (Biological Studies at Orbital Stations Salyut), Dubinin, N.P., Ed., Moscow: Nauka, 1984, pp. 96–102.

    Google Scholar 

  60. Gorovoy, L.F., Kasatkina, T.B., Popova, A.F., Kordyum, E.L., Ugolev, A.M., and Kalakutskiy, L.V., Fungi and algae—objects of space biology, in Problems of Space Biology, Leningrad, Nauka, 1991.

    Google Scholar 

  61. Popova, A.F., Shnyukova, E.I., Kordyum, E.L., and Sytnik, K.M., Plastid ultrastructure, fractional composition and specific activity of amylases in chlorella cells in microgravity, J. Gravit. Physiol., 1995, vol. 2, pp. 159–160.

    Google Scholar 

  62. Nedukha, E.M., Effects of microgravity on the structure and function of plant cell walls, Int. Rev. Cytol., 1997, vol. 170, pp. 39–77.

    Article  CAS  PubMed  Google Scholar 

  63. Rayle, D.L. and Cleland, R.E., The acid growth theory of auxin-induced cell elongation is alive and well, Plant Physiol., 1992, vol. 99, no. 4, pp. 1271–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Trewavas, A.J. and Malho, R., Ca2+ signaling in plant cells: the big network!, Curr. Opin. Plant Biol., 1998, vol. 1, no. 5, pp. 428–433.

    Article  CAS  PubMed  Google Scholar 

  65. Wang, I.I., Zheng, H.Q., Sha, W., Zeng, R., and Xia, Q.C., A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation, J. Exp. Bot., 2006, vol. 57, no. 4, pp. 827–835.

    Article  CAS  PubMed  Google Scholar 

  66. Soh, H., Auh, C., Soh, W.Y., Han, K., Kim, D., Lee, S., and Rhee, Y., Gene expression changes in Arabidopsis seedlings during short-to long-term exposure to 3-D clinorotation, Planta, 2011, vol. 234, no. 2, pp. 255–270.

    Article  CAS  PubMed  Google Scholar 

  67. Kwon, T., Sparks, J.A., Nakashima, J., Allen, S.N., Tang, Y., and Blancaflor, E.B., Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development, Am. J. Bot., 2015, vol. 102, no. 1, pp. 21–35.

    Article  CAS  PubMed  Google Scholar 

  68. Vernikos, J. and Schneider, V.S., Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review, Gerontology, 2010, vol. 56, no. 2, pp. 157–166.

    PubMed  Google Scholar 

  69. Hepler, P.K. and Wayne, R.O., Calcium and plant development, Annu. Rev. Plant. Physiol., 1985, vol. 36, pp. 397–439.

    Article  CAS  Google Scholar 

  70. Roux, S.J., Calcium as mediator of plants’ directional growth response to gravity, in Fundamental of Space Biology, Asahima, M. and Malacinski, G.M., Eds., Berlin: Springer-Verlag, 1990, pp. 57–67.

    Google Scholar 

  71. Knight, H., Calcium signaling during abiotic stress in plants, Int. Rev. Cytol., 2000, vol. 195, pp. 269–324.

    Article  CAS  PubMed  Google Scholar 

  72. Nedukha, E.M., Long clinostation influence on the localization of free and weakly bound calcium in cell walls of Funaria hygrometrica moss protonema cells, Adv. Space Res., 1989, vol. 9, no. 11, pp. 83–86.

    Article  CAS  PubMed  Google Scholar 

  73. Belyavskaya, N.A., Calcium and graviperception in plants: inhibitor analysis, Int. Rev. Cytol., 1996, vol. 168, pp. 123–185.

    Article  CAS  Google Scholar 

  74. Hilaire, E., Paulsen, A.Q., Brown, C.S., and Guikema, J.A., Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells, Plant Cell Physiol., 1995, vol. 36, no. 5, pp. 831–837.

    Article  CAS  PubMed  Google Scholar 

  75. Klymchuk, D.O., Brown, C.S., Chapman, D.K., Vorobyova, T.V., and Martyn, G.M., Cytochemical localization of calcium in soybean root cap cells in microgravity, Adv. Space Res., 2001, vol. 27, no. 5, pp. 967–972.

    Article  CAS  PubMed  Google Scholar 

  76. Rasmussen, O., Klimchuk, D.A., Kordyum, E.L., Danevich, L.A., Tarnavskaya, E.B., Lozovaya, V.V., Tairbekov, M.G., Baggerud, C., and Iversen, T.H., The effect of exposure to microgravity on the development and structural organization of plant protoplasts flown on Biokosmos 9, Physiol. Plant., 1992, vol. 84, no. 1, pp. 162–170.

    Article  CAS  PubMed  Google Scholar 

  77. Kordyum, E.L. and Danevich, L.A., Calcium balance changes in tip growing plant cells under clinorotation, J. Gravit. Physiol., 1995, vol. 2, no. 1, pp. 147–148.

    Google Scholar 

  78. Shevchenko, G. and Kordyum, E., Orientation of root hair growth is influenced by simulated microgravity, J. Gravit. Physiol., 2001, vol. 8, no. 1, pp. 35–36.

    Google Scholar 

  79. Hausmann, N., Fengler, S., Hennig, A., Franz-Wachtel, M., Hampp, R., and Neef, M., Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data, Plant Biol. (Stuttg.), 2014, vol. 16, suppl. 1, pp. 120–128.

    Article  Google Scholar 

  80. Ward, J.M., Pei, Z.M., and Schroeder, J.I., Roles of ion channels in initiation of signal transduction in higher plants, Plant Cell, 1995, vol. 7, no. 7, pp. 833–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kordyum, E.L., Calcium signaling in plant cells in altered gravity, Adv. Space Res., 2003, vol. 32, no. 8, pp. 1621–1630.

    Article  CAS  PubMed  Google Scholar 

  82. Kordyum, E.L. and Chapman, D.K., Plants in Space, Kyiv: Akademperiodika, 2007.

    Google Scholar 

  83. Tatsumi, H., Furuichi, T., Nakano, M., Toyota, M., Hayakawa, K., Sokabe, M., and Iida, H., Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants, Plant Biol. (Stuttg.), 2014, vol. 16, suppl. 1, pp. 18–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Kordyum.

Additional information

Original Russian Text © E.L. Kordyum, D.K. Chapman, 2017, published in Tsitologiya i Genetika, 2017, Vol. 51, No. 2, pp. 41–52.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordyum, E.L., Chapman, D.K. Plants and microgravity: Patterns of microgravity effects at the cellular and molecular levels. Cytol. Genet. 51, 108–116 (2017). https://doi.org/10.3103/S0095452717020049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452717020049

Navigation