Skip to main content

Image-Guided Tumor Ablation: Basic Science

  • Chapter
Tumor Ablation

Abstract

Minimally invasive strategies in image-guided tumor ablation are gaining increasing attention as viable therapeutic options for focal primary and secondary hepatic malignancies (1–3). Although liver transplantation continues to be the standard for cure of hepatocellular carcinoma (HCC), there remains a clear need for treatment alternatives in the large population of HCC patients unable to qualify for liver transplantation surgery (4). For hepatic metastases, while conventional surgical resection has demonstrated acceptable rates of success (5) in carefully selected patient populations, several classes of minimally invasive, image-guided therapeutic strategies are being vigorously explored as practical alternatives (2,3). Possible advantages of minimally invasive therapies compared to surgical resection include the anticipated reduction in morbidity and mortality, lower cost, the ability to perform procedures on outpatients, and the potential application in a wider spectrum of patients, including nonsurgical candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dodd GD III, Soulen MC, Kane RA, et al. Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough. Radiographics 2000;20:9–27.

    Article  PubMed  Google Scholar 

  2. Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Radiol 2000;174:323–331.

    CAS  Google Scholar 

  3. Goldberg SN, Dupuy DE. Image-guided radiofrequency tumor ablation: challenges and opportunities—Part I. J Vase Intervent Radiol 2001;12:1021–1032.

    Article  Google Scholar 

  4. Colella G, Bottelli R, De Carlis L, et al. Hepatocellular carcinoma: comparison between liver transplantation, resective surgery, ethanol injection, and chemoembolization. Transpl Int 1998;11(suppl 1):S193–196.

    Article  PubMed  Google Scholar 

  5. Liver Cancer Study Group of Japan. Survey and follow-up study of primary liver cancer in Japan: report 14. Kyoto: Shinko-Insatsu, 2000.

    Google Scholar 

  6. Ahmed M, Goldberg SN. Thermal ablation therapy for hepatocellular carcinoma. J Vase Intervent Radiol 2002;13(9 suppl):S231–244.

    Article  Google Scholar 

  7. Pautler SE, Pavlovich CP, Mikityansky I, et al. Retroperitoneoscopic-guided radiofrequency ablation of renal tumors. Can J Urol 2001;8:1330–1333.

    PubMed  CAS  Google Scholar 

  8. Pavlovich CP, Walther MM, Choyke PL, et al. Percutaneous radio frequency ablation of small renal tumors: initial results. J Urol 2002;167:10–15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dupuy DE, Zagoria RJ, Akerley W, Mayo-Smith WW, Kavanaugh PV, Safran H. Percutaneous RF ablation of malignancies in the lung. AJR 2000;174:57–60.

    Article  PubMed  CAS  Google Scholar 

  10. Zagoria RJ, Chen MY, Kavanagh PV, Torti FM. Radio frequency ablation of lung metastases from renal cell carcinoma. J Urol 2001;166:1827–1828.

    Article  PubMed  CAS  Google Scholar 

  11. Woertler K, Vestring T, Boettner F, Winkelmann W, Heindel W, Lindner N. Osteoid osteoma: CT-guided percutaneous radiofre-quency ablation and follow-up in 47 patients. J Vase Intervent Radiol 2001;12:717–722.

    Article  CAS  Google Scholar 

  12. Jeffery SS, Birdwell RL, Ikeda DM. Radio-frequency ablation of breast cancer: first report of an emerging technology. Arch Surg 1999;134:1064–1068.

    Article  Google Scholar 

  13. Livraghi T, Giorgio A, Marin A. Hepatocellular carcinoma and cirrhosis in 746 patients: long-term results of percutaneous ethanol injection. Radiology 1995;197:101–108.

    Article  PubMed  CAS  Google Scholar 

  14. Shiina S, Tagawa K, Niwa Y. Percutaneous ethanol injection therapy for hepatocellular carcinoma: results in 146 patients. AJR 1993;160:1023–1025.

    Article  PubMed  CAS  Google Scholar 

  15. Kawano M. An experimental study of percutaneous absolute ethanol injection therapy for small hepatocellular carcinoma: effects of absolute ethanol on healthy canine liver. Gastroenterol Jpn 1989;24:663–669.

    PubMed  CAS  Google Scholar 

  16. Shiina S, Tagawa K, Unuma T. Percutaneous ethanol injection therapy for hepatocellular carcinoma: a histopathologic study. Cancer 1991;68:1524–1530.

    Article  PubMed  CAS  Google Scholar 

  17. Giovannini M, Seltx UF. Ultrasound guided percutaneous alcohol injection of small liver metastases. Cancer 1994;73:294–297.

    Article  PubMed  CAS  Google Scholar 

  18. Livraghi T, Vettori C, Torzilli G, Lazzaroni S, Pellicano S, Ravasi S. Percutaneous ethanol injection of hepatic tumors: single-session therapy under general anesthesia. AJR 1993;160:1065–1069.

    Article  Google Scholar 

  19. Livraghi T. Percutaneous ethanol injection in the treatment of hepatocellular carcinoma in cirrhosis. Hepatogastroenterology 2001;48:20–24.

    PubMed  CAS  Google Scholar 

  20. Liang HL, Yang CF, Pan HB, et al. Small hepatocellular carcinoma: safety and efficacy of single high-dose percutaneous acetic acid injection for treatment. Radiology 2000;214:769–774.

    Article  PubMed  CAS  Google Scholar 

  21. Ohnishi K, Yoshioka H, Ito S, Fujiwara K. Treatment of nodular hepatocellular carcinoma larger than 3 cm with ultrasound-guided percutaneous acetic acid injection. Hepatology 1996;24:1379–1385.

    Article  PubMed  CAS  Google Scholar 

  22. Ohnishi K, Ohyama N, Ito S, Fujiwara K. Small hepatocellular carcinoma: treatment with US-guided intratumoral injection of acetic acid. Radiology 1994;193:747–752.

    Article  PubMed  CAS  Google Scholar 

  23. Ohnishi K, Yoshioka H, Ito S, Fujiwara K. Prospective randomized controlled trial comparing percutaneous acetic acid injection and percutaneous ethanol injection for small hepatocellular carcinoma. Hepatology 1998;27:67–72.

    Article  PubMed  CAS  Google Scholar 

  24. Cooper IS. Cryogenic surgery: a new method of destruction or extirpation of benign or malignant tissue. N Engl J Med 1963;268:743–749.

    Article  Google Scholar 

  25. Onik G, Kane RA, Steele G. Monitoring hepatic cryosurgery with sonography. AJR 1986;147:665–669.

    Article  PubMed  CAS  Google Scholar 

  26. Lee FT, Mahvi DM, Chosy SG, et al. Hepatic cryosurgery with intraoperative US guidance. Radiology 1997;202:624–632.

    Article  PubMed  Google Scholar 

  27. Cozzi PJ, Stewart GJ, Morris DL. Thrombocytopenia after hepatic cryosurgery for colorectal metastases: correlates with hepatic injury. World J Surg 1994;18:774–777.

    Article  PubMed  CAS  Google Scholar 

  28. Rubinsky B, Lee CY, Bastacky J, Onik G. The process of freezing and the mechanism of damage during hepatic cryosurgery. Cryobiology 1990;27:85–97.

    Article  PubMed  CAS  Google Scholar 

  29. Silverman SG, Tuncali K, Adams DF, et al. MR image-guided percutaneous cryotherapy of liver tumors: initial experience. Radiology 2000;217:657–664.

    Article  PubMed  CAS  Google Scholar 

  30. Hoffmann NE, Bischof JC. The cryobiology of cryosurgical injury. Urology 2002;60:40–49.

    Article  PubMed  Google Scholar 

  31. Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol 1984;247:125–142.

    Google Scholar 

  32. Lovelock JE. The hemolysis of human red blood cells by freezing and thawing. Biochem Biophys Acta 1953;10:414–426.

    Article  PubMed  CAS  Google Scholar 

  33. Steponkus PL. Role of plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 1984;35:543–584.

    Article  CAS  Google Scholar 

  34. Toner M. Nucleation of ice crystals inside biological cells. In: Steponkus PL, ed. Advances in Low-Temperature Biology. 1993:1–52.

    Google Scholar 

  35. Pollock GA, Pegg DE, Hardie IR. An isolated perfused rat mesentery model for direct observation of the vasculature during cryopreservation. Cryobiology 1986;23:500–511.

    Article  PubMed  CAS  Google Scholar 

  36. Hoffmann NE, Bischof JC. Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber. II. J Biomech Eng 2001;123:310–316.

    Article  PubMed  CAS  Google Scholar 

  37. Barker JH, Bartlett R, Funk W. The effect of superoxide dismutase on ths skin microcirculation after ischemia and reperfusion. Prog Appl Microcirc 1987;12:276–281.

    Article  Google Scholar 

  38. Zook N, Hussmann J, Brown R. Microcirculatory studies of frostbite injury. Ann Plast Surg 1998;40:246–253.

    Article  PubMed  CAS  Google Scholar 

  39. Asahina E, Shimada K, Hisada Y. A stable state of frozen protoplasm with invisible intracellular ice crystals obtained by rapid cooling. Exp Cell Res 1970;59:349–358.

    Article  PubMed  CAS  Google Scholar 

  40. Gazelle GS, Goldberg SN, Solbiati L, Livraghi T. Tumor ablation with radiofrequency energy. Radiology 2000;217:6333–6346.

    Article  Google Scholar 

  41. McGahan JP, Dodd GD III. Radiofrequency ablation of the liver: current status. AJR 2001;176:3–16.

    Article  Google Scholar 

  42. Cosman E, Nashold B, Ovelman-Levitt J. Theoretical aspects of radiofrequency lesions in the dorsal root entry zone. Neurosurgery 1984;15:945–950.

    Article  PubMed  CAS  Google Scholar 

  43. Seegenschmiedt M, Brady L, Sauer R. Interstitial thermoradiotherapy: review on technical and clinical aspects. Am J Clin Oncol 1990;13:352–363.

    Article  PubMed  CAS  Google Scholar 

  44. Trembley B, Ryan T, Strohbehn J. Interstitial hyperthermia: physics, biology, and clinical aspects. In: Hyperthermia and Oncology, vol 3. Utrecht: VSP, 1992:11–98.

    Google Scholar 

  45. Larson T, Bostwick D, Corcia A. Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissues in patients with benign prostatic hyperplasia. Urology 1996;47:463–469.

    Article  PubMed  CAS  Google Scholar 

  46. Zervas N, Kuwayama A. Pathologic analysis of experimental thermal lesions: comparison of induction heating and radiofrequency electro-coagulation. J Neurosurg 1972;37:418–422.

    Article  PubMed  CAS  Google Scholar 

  47. Thomsen S. Pathologic analysis of photothermal and photomechanical effects of laser tissue interactions. Photochem Photobiol 1991;53:825–835.

    Article  PubMed  CAS  Google Scholar 

  48. Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK. Treatment of intra-hepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer 2000;88:2452–2463.

    Article  PubMed  CAS  Google Scholar 

  49. Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol 1996;3:212–218.

    Article  PubMed  CAS  Google Scholar 

  50. Pennes H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1948;1:93–122.

    PubMed  CAS  Google Scholar 

  51. Rossi S, DiStasi M, Buscarini E. Percutaneous RF interstitial thermal ablation in the treatment of hepatic cancer. AJR 1996;167:759–768.

    Article  PubMed  CAS  Google Scholar 

  52. Solbiati L, Ierace T, Goldberg SN. Percutaneous US-guided RF tissue ablation of liver metastases: long-term follow-up. Radiology 1997;202:195–203.

    Article  PubMed  CAS  Google Scholar 

  53. Goldberg SN, Gazelle GS, Dawson SL, Rittman WJ, Mueller PR, Rosenthal DI. Tissue ablation with radiofrequency using multiprobe arrays. Acad Radiol 1995;2:670–674.

    Article  PubMed  CAS  Google Scholar 

  54. Rossi S, Buscarini E, Garbagnati F. Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. AJR 1998;170:1015–1022.

    Article  PubMed  CAS  Google Scholar 

  55. Siperstein AE, Rogers SJ, Hansen PD, Gitomirsky A. Laparoscopic thermal ablation of hepatic neuroendocrine tumor metastases. Surgery 1997;122:1147–1155.

    Article  PubMed  CAS  Google Scholar 

  56. Leveen RF. Laser hyperthermia and radio-frequency ablation of hepatic lesions. Semin Intervent Radiol 1997;12:313–324.

    Google Scholar 

  57. Berber E, Foroutani A, Garland AM, et al. Use of CT Hounsfleld unit density to identify ablated tumor after laparoscopic radiofrequency ablation of hepatic tumors. Surg Endosc 2000;14:799–804.

    Article  PubMed  CAS  Google Scholar 

  58. de Baere T, Denys A, Johns Wood B, et al. Radiofrequency liver ablation: experimental comparative study of water-cooled versus expandable systems. AJR 2001;176:187–192.

    Article  PubMed  Google Scholar 

  59. McGahan JP, Gu WZ, Brock JM, Tesluk H, Jones CD. Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol 1996;3:418–422.

    Article  PubMed  CAS  Google Scholar 

  60. Desinger K, Stein T, Muller G, Mack M, Vogl T. Interstitial bipolar RF-thermotherapy (REITT) therapy by planning by computer simulation and MRI-monitoring—a new concept for minimally invasive procedures. Proc SPIE 1999;3249:147–160.

    Article  Google Scholar 

  61. Haemmerich DG, Lee FTJ, Chachati L, Wright AS, Mahvi DM, Webster JG. A device that allows for multiple simultaneous radiofrequency (RF) ablations in separated areas of the liver with impedance-controlled cool-ip probes: an ex vivo feasibility study [abstract]. Radiology 2002;225(p):242.

    Google Scholar 

  62. Haemmerich DG, Lee FTJ, Mahvi DM, Wright AS, Webster JG. Multiple probe radiofrequency: rapid switching versus simultaneous power application in a computer model. Radiology 2002;225(p):639.

    Article  Google Scholar 

  63. Goldberg SN, Gazelle GS, Solbiati L, Rittman WJ, Mueller PR. Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol 1996;3:636–644.

    Article  PubMed  CAS  Google Scholar 

  64. Lorentzen T. A cooled needle electrode for radiofrequency tissue ablation: thermodynamic aspects of improved performance compared with conventional needle design. Acad Radiol 1996;3:556–563.

    Article  PubMed  CAS  Google Scholar 

  65. Solbiati L, Ierace T, Tonolini M, Osti V, Cova L. Radiofrequency thermal ablation of hepatic metastases. Eur J Ultrasound 2001;13:149–158.

    Article  PubMed  CAS  Google Scholar 

  66. Goldberg SN, Solbiati L, Hahn PF, et al. Large-volume tissue ablation with radiofrequency by using a clustered, internally-cooled electrode technique: laboratory and clinical experience in liver metastases. Radiology 1998;209:371–379.

    Article  PubMed  CAS  Google Scholar 

  67. Goldberg SN, Stein M, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME. Percutaneous radiofrequency tissue ablation: optimization of pulsed-RF technique to increase coagulation necrosis. J Vase Intervent Radiol 1999;10:907–916.

    Article  CAS  Google Scholar 

  68. Curley MG, Hamilton PS. Creation of large thermal lesions in liver using saline-enhanced RF ablation. Proc 19th International Conference IEEE/EMBS 1997:2516–2519.

    Google Scholar 

  69. Livraghi T, Goldberg SN, Monti F, et al. Saline-enhanced radiofrequency tissue ablation in the treatment of liver metastases. Radiology 1997;202:205–210.

    Article  PubMed  CAS  Google Scholar 

  70. Miao Y, Ni Y, Yu J, Marchal G. A comparative study on validation of a novel cooled-wet electrode for radiofrequency liver ablation. Invest Radiol 2000;35:438–444.

    Article  PubMed  CAS  Google Scholar 

  71. Miao Y, Ni Y, Yu J, Zhang H, Baert A, Marchal G. An ex vivo study on radiofrequency tissue ablation: increased lesion size by using an “expandable-wet” electrode. Eur Radiol 2001;11:1841–1847.

    Article  PubMed  CAS  Google Scholar 

  72. Kettenbach J, Kostler W, Rucklinger E, et al. Percutaneous saline-enhanced radiofrequency ablation of unresectable liver tumors: initial experience in 26 patients. AJR 2003;180:1537–1545.

    Article  PubMed  Google Scholar 

  73. Goldberg SN, Ahmed M, Gazelle GS, et al. Radiofrequency thermal ablation with adjuvant saline injection: effect of electrical conductivity on tissue heating and coagulation. Radiology 2001;219:157–165.

    Article  PubMed  CAS  Google Scholar 

  74. Goldberg SN, Hahn PF, Halpern EF, Fogle R, Gazelle GS. Radiofrequency tissue ablation: effect of pharmacologic modulation of blood flow on coagulation diameter. Radiology 1998;209:761–769.

    Article  PubMed  CAS  Google Scholar 

  75. Merkle E, Goldberg SN, Boll DT, et al. Effect of supramagnetic MR contrast agents on radio-frequency induced temperature distribution: in vitro measurements in polyacrylamide phantoms and in vivo results in a rabbit liver model. Radiology 1999;212:459–466.

    Article  PubMed  CAS  Google Scholar 

  76. Lobo SM, Afzal SK, Kruskal JB, Lenkinski RE, Gazelle GS, Goldberg SN. Radiofrequency thermal ablation using an adjuvant NaCl gel: effect of electrical conductivity on tissue coagulation [abstract]. Radiology 2001;201(suppl):398.

    Google Scholar 

  77. Goldberg SN, Hahn PF, Tanabe KK, et al. Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vase Intervent Radiol 1998;9:101–111.

    Article  CAS  Google Scholar 

  78. Patterson EJ, Scudamore CH, Owen DA, Nagy AG, Buczkowski AK. Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Ann Surg 1998;227:559–565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lu DS, Raman SS, Vodopich DJ, Wang M, Sayre J, Lassman C. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the “heat sink” effect. AJR 2002;178:47–51.

    Article  PubMed  Google Scholar 

  80. Rossi S, Garbagnati F, Lencioni R, et al. Percutaneous radiofrequency thermal ablation of nonresectable hepatocellular carcinoma after occlusion of tumor blood supply. Radiology 2000;217:119–126.

    Article  PubMed  CAS  Google Scholar 

  81. King RWP, Shen LC, Wu TT. Embedded insulated antenna for communication and heating. Electromagnetics 1981;l:51–72.

    Article  Google Scholar 

  82. Foster KR, Schepps JL. Dielectric properties of tumor and normal tissues at radio through microwave frequencies. J Microwave Power 1981;16:107–119.

    CAS  Google Scholar 

  83. Moriyama E, Matsumi N, Shiraishi T, et al. Hyperthermia for brain tumors: improved delivery with a new cooling system. Neurosurgery 1988;23:189–195.

    Article  PubMed  CAS  Google Scholar 

  84. Saitsu H, Mada Y, Taniwaki S, et al. Investigation of microwave coagulo-necrotic therapy for 21 patients with small hepatocellular carcinoma less than 5 cm in diameter. Nippon Geka Gakkai Zasshi 1993;94:356–365.

    Google Scholar 

  85. Saitsu H, Nakayama T. Microwave coagulonecrotic therapy for hepatocellular carcinoma. Nippon Rinsho 1993;51:1102–1107.

    PubMed  CAS  Google Scholar 

  86. Watanabe Y, Sato M, Abe Y, et al. Laparoscopic microwave coagulo-necrotic therapy for hepatocellular carcinoma: a feasible study of an alternative option for poor-risk patients. J Laparoendosc Surg 1995;5:169–175.

    Article  PubMed  CAS  Google Scholar 

  87. Sato M, Watanabe Y, Ueda S, et al. Microwave coagulation therapy for hepatocellular carcinoma. Gastroenterology 1996;110:1507–1514.

    Article  PubMed  CAS  Google Scholar 

  88. Shibata T, Iimuro Y, Yamamoto Y, et al. Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy. Radiology 2002;223:331–337.

    Article  PubMed  Google Scholar 

  89. Dong B, Liang P, Yu X, et al. Percutaneous sonographically guided microwave coagulation therapy for hepatocellular carcinoma: results in 234 patients. AJR 2003;180:1547–1555.

    Article  PubMed  Google Scholar 

  90. Brown S. Laser-tissue interactions. Krausner N 1991;Lasers in Gastroenterology:37–50.

    Google Scholar 

  91. Dachman AH, McGehee JA, Beam TE, Burris JA, Powell DA. US-guided percutaneous laser ablation of liver tissue in a chronic pig model. Radiology 1990;176:129–133.

    Article  PubMed  CAS  Google Scholar 

  92. Jiao LR, Hansen PD, Havlik R, Mitry RR, Pignatelli M, Habib N. Clinical short-term results of radiofrequency ablation in primary and secondary liver tumors. Am J Surg 1999;177:303–306.

    Article  PubMed  CAS  Google Scholar 

  93. Nolsoe CP, Torp-Pedersen S, Burcharth F, et al. Interstitial hyperthermia of colorectal liver metastases with an US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology 1993;187:333–337.

    Article  PubMed  CAS  Google Scholar 

  94. Diederich CJ, Nau WH, Deardorff DL. Prostate thermal therapy with interstitial and transurethral ultrasound applicators: a feasibility study. In: Ryan TP, ed. Surgical Applications of Energy, Proceedings of SPIE Vol. 3249. 1998:2–13.

    Google Scholar 

  95. Vogl TJ, Muller PK, Hammerstingl R, et al. Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results. Radiology 1995;196:257–265.

    Article  PubMed  CAS  Google Scholar 

  96. Vogl T, Eichler K, Straub R, et al. Laser-induced thermotherapy of malignant liver tumors: general principles, equipment, procedure—side effects, complications and results. Eur J Ultrasound 2001;13:117–127.

    Article  PubMed  CAS  Google Scholar 

  97. Vogl TJ, Mack MG, Roggan A, et al. Internally cooled power laser for MR-guided interstitial laser-induced thermotherapy of liver lesions: initial clinical results. Radiology 1998;209:381–385.

    Article  PubMed  CAS  Google Scholar 

  98. Yang R, Sanghvi NT, Rescorla FJ, Kopecky KK, Grosfeld JL. Liver cancer ablation with extra-corporeal high-intensity focused ultrasound. Eur Urol 1993;23(suppl l):17–22.

    PubMed  Google Scholar 

  99. Jolesz FA, Hynynen K. Magnetic resonance image-guided focused ultrasound surgery. Cancer 2002;8(suppl 1):S100–112.

    Google Scholar 

  100. Sanghvi NT, Hawes RH. High-intensity focused ultrasound. Gastrointest Endosc Clin North Am 1994;4:383–395.

    CAS  Google Scholar 

  101. Reilly CR, Yang R, Reilly WM. Tissue heating measurements during high intensity focused ultrasound cancer therapy. J Ultrasound Med 1991;10:S26.

    Google Scholar 

  102. Hill CR, ter Haar GR. Review article: high intensity focused ultrasound—potential for cancer treatment. Br J Radiol 1995;68:1296–1303.

    Article  PubMed  CAS  Google Scholar 

  103. Christophi C, Muralidharan V. Treatment of hepatocellular carcinoma by percutaneous laser hyperthermia. J Gastroenterol Hepatol 2001;16:548–552.

    Article  PubMed  CAS  Google Scholar 

  104. Goldberg SN, Saldinger PF, Gazelle GS, et al. Percutaneous tumor ablation: increased coagulation necrosis with combined radiofrequency and percutaneous doxorubicin injection. Radiology 2001;220:420–427.

    Article  PubMed  CAS  Google Scholar 

  105. Goldberg SN, Girnan GD, Lukyanov AN, et al. Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intravenous liposomal doxorubicin in a rat breast tumor model. Radiology 2002;222:797–804.

    Article  PubMed  Google Scholar 

  106. Monsky WL, Kruskal JB, Lukyanov AN, et al. Radio-frequency ablation increases intratumoral liposomal doxorubicin accumulation in a rat breast tumor model. Radiology 2002;224:823–829.

    Article  PubMed  CAS  Google Scholar 

  107. D’Ippolito G, Ahmed M, Girnan GD, et al. Percutaneous tumor ablation: increased endpoint survival with combined radiofrequency ablation and liposomal doxorubicin in a rat breast tumor model. Radiology; in press.

    Google Scholar 

  108. Goldberg SN, Kamel IR, Kruskal JB, et al. Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. AJR 2002;179:93–101.

    Article  PubMed  Google Scholar 

  109. Kruskal JB, Oliver B, Huertas JC, Goldberg SN. Dynamic intrahepatic flow and cellular alterations during radiofrequency ablation of liver tumors in mice. J Vase Intervent Radiol 2001;12:1193–1201.

    Article  CAS  Google Scholar 

  110. Kong G, Dewhirst MW. Hyperthermia and liposomes. Int J Hyperthermia 1999;15:345–370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ahmed, M., Goldberg, S.N. (2005). Image-Guided Tumor Ablation: Basic Science. In: vanSonnenberg, E., McMullen, W.N., Solbiati, L., Livraghi, T., Müeller, P.R., Silverman, S.G. (eds) Tumor Ablation. Springer, New York, NY. https://doi.org/10.1007/0-387-28674-8_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-28674-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95539-1

  • Online ISBN: 978-0-387-28674-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics