Skip to main content

Inferring Evolutionary History through Inter- and Intraspecific DNA Sequence Comparison

The Drosophila janus and ocnus Genes

  • Chapter
Selective Sweep

Abstract

Statistical analysis of aligned DNA sequences, both among and within species, has proven to be a valuable tool for inferring the evolutionary history of genetic loci. Of particular interest are cases where the observed data depart from the neutral expectation and suggest adaptive evolution due to positive natural selection. In this chapter, we use the Drosophila janusA, janusB and ocnus genes to demonstrate methods of evolutionary inference from both inter- and intraspecific DNA sequence data. Interspecific comparisons suggest that these three paralogous, testes-expressed genes have diverged in function following duplication and have evolved under different selective constraints. The three genes show the increased rate of between-species amino acid replacement common to genes with reproductive function, which may be the result of recurrent positive selection. Intraspecific comparison of D. simulans alleles provides evidence for more recent positive selection in this region of the genome. There are two divergent haplotype groups segregating in the worldwide population, one of which has risen to high frequency within the past 5000 years. The observed pattern of within-species variation may best be explained by a selective sweep that has not gone to completion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press, 1983.

    Google Scholar 

  2. Endo T, Ikeo K, Gojobori T. Large-scale search for genes on which positive selection may operate. Mol Biol Evol 1996; 13:685–690.

    PubMed  CAS  Google Scholar 

  3. Fitch WM, Bush RM, Bender CA et al. Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci USA 1997; 94:7712–7718.

    Article  PubMed  CAS  Google Scholar 

  4. Yang Z, Nielsen R, Goldman N et al. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000; 155:431–449.

    PubMed  CAS  Google Scholar 

  5. Tsaur SC, Wu CI. Positive selection and the molecular evolution of a gene of male reproduction, Acp26Aa of Drosophila. Mol Biol Evol 1997; 14:544–549.

    PubMed  CAS  Google Scholar 

  6. Wyckoff GJ, Wang W, Wu CI. Rapid evolution of male reproductive genes in the descent of man. Nature 2000; 403:304–309.

    Article  PubMed  CAS  Google Scholar 

  7. Swanson WJ, Clark AG, Waldrip-Dail HM et al. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc Natl Acad Sci USA 2001; 98:7375–7379.

    Article  PubMed  CAS  Google Scholar 

  8. Yang Z, Swanson WJ. Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 2002; 19:49–57.

    PubMed  Google Scholar 

  9. Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res 1974; 23:23–35.

    Article  Google Scholar 

  10. Kaplan NL, Hudson RR, Langley CH. The “hitchhiking effect” revisited. Genetics 1989; 123:887–899.

    PubMed  CAS  Google Scholar 

  11. Stephan W, Wiehe THE, Lenz MW. The effect of strongly selected substitutions on neutral polymorphism: Analytical results based on diffusion theory. Theor Pop Biol 1992; 41:237–254.

    Article  Google Scholar 

  12. Aguadé M, Miyashita N, Langley CH. Restriction-map variation at the zeste-tko region in natural populations of Drosophila melanogaster. Mol Biol Evol 1989; 6:123–130.

    PubMed  Google Scholar 

  13. Stephan W, Langley CH. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. contrasts between the vermilion and forked loci. Genetics 1989; 121:89–99.

    PubMed  CAS  Google Scholar 

  14. Begun DJ, Aquadro CF. Molecular population genetics of the distal portion of the X chromosome in Drosophila: Evidence for genetic hitchhiking of the yellow-achaete region. Genetics 1991; 129:1147–1158.

    PubMed  CAS  Google Scholar 

  15. Berry AJ, Ajioka JW, Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 1991; 129:1111–1117.

    PubMed  CAS  Google Scholar 

  16. Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics 1993; 134:1289–1303.

    PubMed  CAS  Google Scholar 

  17. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123:585–595.

    PubMed  CAS  Google Scholar 

  18. Hudson RR, Bailey K, Skarecky D et al. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics 1994; 136:1329–1340.

    PubMed  CAS  Google Scholar 

  19. Depaulis F, Veuille M. Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol 1998; 15:1788–1790.

    PubMed  CAS  Google Scholar 

  20. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics 1993; 133:693–709.

    PubMed  CAS  Google Scholar 

  21. Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics 2000; 155:1405–1413.

    PubMed  CAS  Google Scholar 

  22. Kim Y, Stephan W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 2002; 160:765–777.

    PubMed  CAS  Google Scholar 

  23. Begun DJ, Aquadro CF. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 1992; 356:519–520.

    Article  PubMed  CAS  Google Scholar 

  24. Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics 1987; 116:153–159.

    PubMed  CAS  Google Scholar 

  25. McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 1991; 351:652–654.

    Article  PubMed  CAS  Google Scholar 

  26. Yanicostas C, Vincent A, Lepesant JA. Transcriptional and posttranscriptional regulation contributes to the sex-regulated expression of two sequence-related genes at the janus locus of Drosophila melanogaster. Mol Cell Biol 1989; 9:2526–2535.

    PubMed  CAS  Google Scholar 

  27. Yanicostas C, Lepesant JA. Transcriptional and translational cis-regulatory sequences of the spermatocyte-specific Drosophila janusB gene are located in the 3′ exonic region of the overlapping janusA gene. Mol Gen Genet 1990; 224:450–458.

    Article  PubMed  CAS  Google Scholar 

  28. Parsch J, Meiklejohn CD, Hauschteck-Jungen E et al. Molecular evolution of the ocnus and janus genes in the Drosophila melanogaster species subgroup. Mol Biol Evol 2001; 18:801–811.

    PubMed  CAS  Google Scholar 

  29. Yanicostas C, Ferrer P, Vincent A et al. Separate cis-regulatory sequences control expression of serendipity β and janus A, two immediately adjacent Drosophila genes. Mol Gen Genet 1995; 246:549–560.

    Article  PubMed  CAS  Google Scholar 

  30. C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 1998; 282:2012–2018.

    Google Scholar 

  31. Civetta A, Singh RS. Sex-related genes, directional sexual selection, and speciation. Mol Biol Evol 1998; 15:901–909.

    PubMed  CAS  Google Scholar 

  32. Parsch J, Meiklejohn CD, Hartl DL. Patterns of DNA sequence variation suggest the recent action of positive selection in the janus-ocnus region of Drosophila simulans. Genetics 2001; 159:647–657.

    PubMed  CAS  Google Scholar 

  33. Moriyama EN, Powell JR. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol 1996; 13:261–277.

    PubMed  CAS  Google Scholar 

  34. Rozas J, Gullaud M, Blandin G et al. DNA variation at the rp49 gene region of Drosophila simulans: Evolutionary inferences from an unusual haplotype structure. Genetics 2001; 158:1147–1155.

    PubMed  CAS  Google Scholar 

  35. Begun DJ, Whitley P. Reduced X-linked nucleotide polymorphism in Drosophila simulans. Proc Nacl Acad Sci USA 2000; 97:5960–5965.

    Article  CAS  Google Scholar 

  36. Hamblin MT, Aquadro CF. High nucleotide sequence variation in a region of low recombination in Drosophila simulans is consistent with the background selection model. Mol Biol Evol 1996; 13:1133–1140.

    PubMed  CAS  Google Scholar 

  37. True JR., Mercer JM, Laurie CC. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics 1996; 142:507–523.

    PubMed  CAS  Google Scholar 

  38. Kim Y, Stephan W. Joint effects of genetic hitchhiking and background selection on neutral variation. Genetics 2000; 155:1415–1427.

    PubMed  CAS  Google Scholar 

  39. Kirby DA, Stephan W. Multi-locus selection and the structure of variation at the white gene of Drosophila melanogaster. Genetics 1996; 144:635–645.

    PubMed  CAS  Google Scholar 

  40. Adams MD, Celniker SE, Holt RA et al. The genome sequence of Drosophila melanogaster. Science 2000; 287:2185–2195.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Parsch, J., Meiklejohn, C.D., Hartl, D.L. (2005). Inferring Evolutionary History through Inter- and Intraspecific DNA Sequence Comparison. In: Nurminsky, D. (eds) Selective Sweep. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27651-3_1

Download citation

Publish with us

Policies and ethics