Skip to main content

Cost-effectiveness of Minimally Invasive Hemodynamic Monitoring

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 2005

Part of the book series: EN]Yearbook of Intensive Care and Emergency Medicine ((volume 2005))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellomo R, Uchino S (2003) Cardiovascular monitoring tools: use and misuse. Curr Opin Crit Care 9:225–229

    Article  PubMed  Google Scholar 

  2. Chaney JC, Derdak S (2002) Minimally invasive hemodynamic monitoring for the intensivist: current and emerging technology. Crit Care Med 30:2338–2345

    Article  PubMed  Google Scholar 

  3. Smith GC, Pell JP (2003) Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomised controlled trials. BMJ 327:1459–1461

    PubMed  Google Scholar 

  4. American Thoracic Society workshop on outcomes research (2002) Understanding costs and cost-effectiveness in critical care. Am J Respir Crit Care Med 165:540–550

    Google Scholar 

  5. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451

    PubMed  Google Scholar 

  6. Ivanov R, Allen J, Calvin JE (2000) The incidence of major morbidity in critically ill patients managed with pulmonary artery catheters: a meta-analysis. Crit Care Med 28:615–619

    Article  PubMed  Google Scholar 

  7. Sandham JD, Hull RD, Brant RF, et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    Google Scholar 

  8. Robin ED (1987) Death by pulmonary artery flow-directed catheter. Time for a moratorium? Chest 92:727–731

    PubMed  Google Scholar 

  9. Kumar A, Anel R, Bunnell E, et al (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699

    PubMed  Google Scholar 

  10. Connors AF Jr, Speroff T, Dawson NV, et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276:889–897

    Article  PubMed  Google Scholar 

  11. Matthay MA, Chatterjee K (1988) Bedside catheterization of the pulmonary artery: risks compared with benefits. Ann Intern Med 109:826–834

    PubMed  Google Scholar 

  12. Jacka MJ, Cohen MM, To T, Devitt JH, Byrick R (2002) Pulmonary artery occlusion pressure estimation: how confident are anesthesiologists? Crit Care Med 30:1197–1203

    Article  PubMed  Google Scholar 

  13. Squara P, Bennett D, Perret C (2002) Pulmonary artery catheter: does the problem lie in the users? Chest 121:2009–2015

    Article  PubMed  Google Scholar 

  14. Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians' insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220

    Article  PubMed  Google Scholar 

  15. Branthwaite MA, Bradley RD (1968) Measurement of cardiac output by thermal dilution in man. J Appl Physiol 24:434–438

    PubMed  Google Scholar 

  16. Olsson B, Pool J, Vandermoten P, Varnauskas E, Wassen R (1970) Validity and reproducibility of determination of cardiac output by thermodilution in man. Cardiology 55:136–148

    PubMed  Google Scholar 

  17. Stetz CW, Miller RG, Kelly GE, Raffin TA (1982) Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis 126:1001–1004

    PubMed  Google Scholar 

  18. Keech J, Reed RL 2nd (2003) Reliability of mixed venous oxygen saturation as an indicator of the oxygen extraction ratio demonstrated by a large patient data set. J Trauma 54:236–241

    PubMed  Google Scholar 

  19. Singer M (1998) Cardiac output in 1998. Heart 79:425–428

    PubMed  Google Scholar 

  20. Eisenberg PR, Jaffe AS, Schuster DP (1984) Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients. Crit Care Med 12:549–553

    PubMed  Google Scholar 

  21. Mueller HS, Chatterjee K, Davis KB, et al (1998) ACC expert consensus document. Present use of bedside right heart catheterization in patients with cardiac disease. American College of Cardiology. J Am Coll Cardiol 32:840–864

    Article  PubMed  Google Scholar 

  22. Richard C, Warszawski J, Anguel N, et al (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 290:2713–2720

    Article  PubMed  Google Scholar 

  23. Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27:2407–2412

    Article  PubMed  Google Scholar 

  24. Goedje O, Seebauer T, Peyerl M, Pfeiffer UJ, Reichart B (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118:775–781

    Article  PubMed  Google Scholar 

  25. Buhre W, Weyland A, Kazmaier S, et al (1999) Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vasc Anesth 13:437–440

    Article  PubMed  Google Scholar 

  26. Godje O, Hoke K, Lamm P, et al (1998) Continuous, less invasive, hemodynamic monitoring in intensive care after cardiac surgery. Thorac Cardiovasc Surg 46:242–249

    Google Scholar 

  27. Bindels AJ, van der Hoeven JG, Meinders AE (2000) Extravascular lung water in patients with septic shock during a fluid regimen guided by cardiac index. Neth J Med 57:82–93

    Article  PubMed  Google Scholar 

  28. Holm C, Melcer B, Horbrand F, Henckel von Donnersmarck G, Muhlbauer W (2001) Arterial thermodilution: an alternative to pulmonary artery catheter for cardiac output assessment in burn patients. Burns 27:161–166

    Article  PubMed  Google Scholar 

  29. Sakka SG, Reinhart K, Meier-Hellmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25:843–846

    Article  PubMed  Google Scholar 

  30. Della Rocca G, Costa MG, Pompei L, Coccia C, Pietropaoli P (2002) Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth 88:350–356

    Article  PubMed  Google Scholar 

  31. Friedman Z, Berkenstadt H, Margalit N, Sega E, Perel A (2002) Cardiac output assessed by arterial thermodilution during exsanguination and fluid resuscitation: experimental validation against a reference technique. Eur J Anaesthesiol 19:337–340

    PubMed  Google Scholar 

  32. Godje O, Peyerl M, Seebauer T, Dewald O, Reichart B (1998) Reproducibilify of double indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 113:1070–1077

    PubMed  Google Scholar 

  33. McLuckie A, Murdoch IA, Marsh MJ, Anderson D (1996) A comparison of pulmonary and femoral artery thermodilution cardiac indices in paediatric intensive care patients. Acta Paediatr 85:336–338

    PubMed  Google Scholar 

  34. Zollner C, Briegel J, Kilger E, Haller M (1998) [Retrospective analysis of transpulmonary and pulmonary arterial measurement of cardiac output in ARDS patients]. Anaesthesist 47:912–917

    PubMed  Google Scholar 

  35. Sakka SG, Ruhl CC, Pfeiffer UJ, et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187

    Article  PubMed  Google Scholar 

  36. Zollner C, Haller M, Weis M, et al (2000) Beat-to-beat measurement of cardiac output by intravascular pulse contour analysis: a prospective criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc Anesth 14:125–129

    Article  PubMed  Google Scholar 

  37. Haller M, Zollner C, Briegel J, Forst H (1995) Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med 23:860–866

    Article  PubMed  Google Scholar 

  38. Malbrain ML, Cheatham ML (2004) Cardiovascular effects and optimal preload markers in intraabdominal hypertension. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Berlin, pp 519–543

    Google Scholar 

  39. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908

    Article  PubMed  Google Scholar 

  40. Malbrain ML (2004) Is it wise not to think about intraabdominal hypertension in the ICU? Curr Opin Crit Care 10:132–145

    Article  PubMed  Google Scholar 

  41. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  42. Reuter DA, Felbinger TW, Moerstedt K, et al (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16:191–195

    Article  PubMed  Google Scholar 

  43. Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  Google Scholar 

  44. Michard F, Chemla D, Richard C, et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939

    PubMed  Google Scholar 

  45. Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998

    PubMed  Google Scholar 

  46. Alsous F, Khamiees M, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA (2000) Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest 117:1749–1754

    Article  PubMed  Google Scholar 

  47. Balogh Z, McKinley BA, Cocanour CS, et al (2003) Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg 138:637–642

    Article  PubMed  Google Scholar 

  48. Davey-Quinn A, Gedney JA, Whiteley SM, Bellamy MC (1999) Extravascular lung water and acute respiratory distress syndrome-oxygenation and outcome. Anaesth Intensive Care 27:357–362

    PubMed  Google Scholar 

  49. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122:2080–2086

    Article  PubMed  Google Scholar 

  50. Eisenberg PR, Hansbrough JR, Anderson D, Schuster DP (1987) A prospective study of lung water measurements during patient management in an intensive care unit. Am Rev Respir Dis 136:662–668

    PubMed  Google Scholar 

  51. Buhre W, Kazmaier S, Sonntag H, Weyland A (2001) Changes in cardiac output and intrathoracic blood volume: a mathematical coupling of data? Acta Anaesthesiol Scand 45:863–867

    Article  PubMed  Google Scholar 

  52. Jonas MM, Tanser SJ (2002) Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system for continuous estimation of cardiac output. Curr Opin Crit Care 8:257–261

    Article  PubMed  Google Scholar 

  53. Reuter DA, Felbinger TW, Schmidt C, et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398

    Article  PubMed  Google Scholar 

  54. Capek JM, Roy RJ (1988) Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng 35:653–661

    Article  PubMed  Google Scholar 

  55. Benatar SR, Hewlett AM, Nunn JF (1973) The use of iso-shunt lines for control of oxygen therapy. Br J Anaesth 45:711–718

    PubMed  Google Scholar 

  56. de Abreu MG, Geiger S, Winkler T, et al (2002) Evaluation of a new device for noninvasive measurement of nonshunted pulmonary capillary blood flow in patients with acute lung injury. Intensive Care Med 28:318–323

    Article  PubMed  Google Scholar 

  57. de Abreu MG, Quintel M, Ragaller M, Albrecht DM (1997) Partial carbon dioxide rebreathing: a reliable technique for noninvasive measurement of nonshunted pulmonary capillary blood flow. Crit Care Med 25:675–683

    Article  PubMed  Google Scholar 

  58. Side CD, Gosling RG (1971) Non-surgical assessment of cardiac function. Nature 232:335–336

    Article  PubMed  Google Scholar 

  59. Singer M, Clarke J, Bennett ED (1989) Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med 17:447–452

    PubMed  Google Scholar 

  60. Gan TJ, Arrowsmith JE (1997) The oesophageal Doppler monitor. BMJ 315:893–894

    PubMed  Google Scholar 

  61. Oh JK, Seward JB, Tajik JA (1999) The Echo Manual, Second Edition, Lippincott, Williams and Wilkins, pp 16–19

    Google Scholar 

  62. Boulnois JL, Pechoux T (2000) Non-invasive cardiac output monitoring by aortic blood flow measurement with the Dynemo 3000. J Clin Monit Comput 16:127–140

    Article  PubMed  Google Scholar 

  63. Singer M (1993) Esophageal Doppler monitoring of aortic blood flow: beat-by-beat cardiac output monitoring. Int Anesthesiol Clin 31:99–125

    PubMed  Google Scholar 

  64. Wallmeyer K, Wann LS, Sagar KB, Kalbfleisch J, Klopfenstein HS (1986) The influence of preload and heart rate on Doppler echocardiographic indexes of left ventricular performance: comparison with invasive indexes in an experimental preparation. Circulation 74:181–186

    PubMed  Google Scholar 

  65. Singer M, Allen MJ, Webb AR, Bennett ED (1991) Effects of alterations in left ventricular filling, contractility, and systemic vascular resistance on the ascending aortic blood velocity waveform of normal subjects. Crit Care Med 19:1138–1145

    PubMed  Google Scholar 

  66. Madan AK, UyBarreta VV, Aliabadi-Wahle S, et al (1999) Esophageal Doppler ultrasound monitor versus pulmonary artery catheter in the hemodynamic management of critically ill surgical patients. J Trauma 46:607–611

    PubMed  Google Scholar 

  67. Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ 315:909–912

    PubMed  Google Scholar 

  68. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429

    PubMed  Google Scholar 

  69. Summers RL, Shoemaker WC, Peacock WF, Ander DS, Coleman TG (2003) Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med 10:669–680

    Article  PubMed  Google Scholar 

  70. Moshkovitz Y, Kaluski E, Milo O, Vered Z, Cotter G (2004) Recent developments in cardiac output determination by bioimpedance: comparison with invasive cardiac output and potential cardiovascular applications. Curr Opin Cardiol 19:229–237

    Article  PubMed  Google Scholar 

  71. Summers RL, Peacock WF (2004) Clinical assessment of hemodynamics using impedance cardiography. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 565–575

    Google Scholar 

  72. Raaijmakers E, Faes TJ, Scholten RJ, Goovaerts HG, Heethaar RM (1999) A meta-analysis of published studies concerning the validity of thoracic impedance cardiography. Ann NY Acad Sci 873:121–127

    PubMed  Google Scholar 

  73. Peacock WI, Albert NM, Kies P, White RD, Emerman CL (2000) Bioimpedance monitoring: better than chest x-ray for predicting abnormal pulmonary fluid? Congest Heart Fail 6:86–89

    PubMed  Google Scholar 

  74. Raaijmakers E, Faes TJ, Meijer JM, et al (1998) Estimation of non-cardiogenic pulmonary oedema using dual-frequency electrical impedance. Med Biol Eng Comput 36:461–466

    PubMed  Google Scholar 

  75. Summers RL, Kolb JC, Woodward LH, Galli RL (1999) Differentiating systolic from diastolic heart failure using impedance cardiography. Acad Emerg Med 6:693–698

    PubMed  Google Scholar 

  76. Peacock W, Summers R, Emerman C (2003) Emergent dyspnea impedance cardiography-aided assessment changes therapy: the ED-IMPACT Trial. Ann Emerg Med 42:S82

    Google Scholar 

  77. Trottier SJ, Taylor RW (1997) Physicians' attitudes toward and knowledge of the pulmonary artery catheter: Society of Critical Care Medicine membership survey. New Horiz 5:201–206

    PubMed  Google Scholar 

  78. Kurita T, Morita K, Kato S, Kikura M, Horie M, Ikeda K (1997) Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 79:770–775

    PubMed  Google Scholar 

  79. Mason DJ, O'Grady M, Woods JP, McDonell W (2001) Assessment of lithium dilution cardiac output as a technique for measurement of cardiac output in dogs. Am J Vet Res 62:1255–1261

    PubMed  Google Scholar 

  80. Gunkel CI, Valverde A, Morey TE, Hernandez J, Robertson SA (2004) Comparison of noninvasive cardiac output measurement by partial carbon dioxide rebreathing with the lithium dilution method in anesthetized dogs. J Vet Emerg Crit Care 14:187–195

    Article  Google Scholar 

  81. Linton RA, Jonas MM, Tibby SM, et al (2000) Cardiac output measured by lithium dilution and transpulmonary thermodilution in patients in a paediatric intensive care unit. Intensive Care Med 26:1507–1511

    Article  PubMed  Google Scholar 

  82. Linton R, Band D, O'Brien T, Jonas M, Leach R (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25:1796–1800

    Article  PubMed  Google Scholar 

  83. Young CC, Garica-Rodrigues CR, Cassell C, et al (2000) Lithium dilution versus thermodilution cardiac output measurement in cardiac surgery patients. ASA Meeting Abstract A586. Available at: http://www.asaabstracts.com

    Google Scholar 

  84. Odenstedt H, Stenqvist O, Lundin S (2002) Clinical evaluation of a partial CO2 rebreathing technique for cardiac output monitoring in critically ill patients. Acta Anaesthesiol Scand 46:152–159

    Article  PubMed  Google Scholar 

  85. Kotake Y, Moriyama K, Innami Y, et al (2003) Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients under-going aortic reconstruction surgery. Anesthesiology 99:283–288

    Article  PubMed  Google Scholar 

  86. Kuck K, Ing D, Haryadi DG, et al (1998) Evaluation of partial re-breathing cardiac output measurement during surgery. Anesthesiology 89:A542 (abst)

    Article  Google Scholar 

  87. Guzzi L, Jaffe MB, Orr JA (1998) Clinical evaluation of a new non-invasive method of cardiac output measurement: preliminary results in CABG patients. Anesthesiology 89:A543 (abst)

    Article  Google Scholar 

  88. Jopling MW (1998) Noninvasive cardiac output determination utilizing the method of partial CO2 rebreathing. A comparison with continuous and bolus thermodilution cardiac output. Anesthesiology 89:A544 (abst)

    Article  Google Scholar 

  89. Loeb RG, Brown EA, DiNardo JA, et al (1999) Clinical accuracy of a new non-invasive cardiac output monitor. Anesthesiology 91:A474 (abst)

    Google Scholar 

  90. Watt RC, Loeb RG, Orr JA (1998) Comparison of a new non-invasive cardiac output technique with invasive bolus and continuous thermodilution. Anesthesiology 89:A536 (abst)

    Article  Google Scholar 

  91. Kuck K, Orr JA, Haryadi DG, et al (1999) Evaluation of the NICO partial rebreathing cardiac output monitor. Anesthesiology 91:A560 (abst)

    Article  Google Scholar 

  92. Rocco M, Spadetta G, Morelli A, et al (2004) A comparative evaluation of thermodilution and partial CO2 rebreathing techniques for cardiac output assessment in critically ill patients during assisted ventilation. Intensive Care Med 30:82–87

    Article  PubMed  Google Scholar 

  93. Murias GE, Villagra A, Vatua S, et al (2002) Evaluation of a noninvasive method for cardiac output measurement in critical care patients. Intensive Care Med 28:1470–1474

    Article  PubMed  Google Scholar 

  94. Valtier B, Cholley BP, Belot JP, de la Coussaye JE, Mateo J, Payen DM (1998) Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med 158:77–83

    PubMed  Google Scholar 

  95. Bernardin G, Tiger F, Fouche R, Mattei M (1998) Continuous noninvasive measurement of aortic blood flow in critically ill patients with a new esophageal echo-Doppler system. J Crit Care 13:177–183

    Article  PubMed  Google Scholar 

  96. Baillard C, Cohen Y, Fosse JP, Karoubi P, Hoang P, Cupa M (1999) Haemodynamic measurements (continuous cardiac output and systemic vascular resistance) in critically ill patients: transoesophageal Doppler versus continuous thermodilution. Anaesth Intensive Care 27:33–37

    PubMed  Google Scholar 

  97. Leather HA, Wouters PF (2001) Oesophageal Doppler monitoring overestimates cardiac output during lumbar epidural anaesthesia. Br J Anaesth 86:794–797

    Article  PubMed  Google Scholar 

  98. Hullett B, Gibbs N, Weightman W, Thackray M, Newman M (2003) A comparison of CardioQ and thermodilution cardiac output during off-pump coronary artery surgery. J Cardiothorac Vasc Anesth 17:728–732

    Article  PubMed  Google Scholar 

  99. Dark PM, Singer M (2004) The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med 30:2060–2066

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malbrain, M., De Potter, T., Deeren, D. (2005). Cost-effectiveness of Minimally Invasive Hemodynamic Monitoring. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2005. EN]Yearbook of Intensive Care and Emergency Medicine, vol 2005. Springer, New York, NY. https://doi.org/10.1007/0-387-26272-5_52

Download citation

  • DOI: https://doi.org/10.1007/0-387-26272-5_52

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-3-540-23476-0

  • Online ISBN: 978-0-387-26272-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics