Skip to main content

Part of the book series: Protein Reviews ((PRON,volume 4))

Abstract

Formation of amyloid fibrils from an amyloidogenic precursor peptide is a stochastic process. Initially, conditions do not favor aggregation, and this period corresponds to the lag phase that precedes the possible formation of fibrils. This lag phase can be overcome by the amyloidogenic peptide reaching a critically high concentration, or via binding with apolipoproteins or other chaperone proteins. Apolipoproteins interact with numerous amyloidogenic peptides in diverse systemic and organ limited amyloidoses because of their natural tendency to bind hydrophobic domains present on these peptides. Apolipoproteins appear to play an essential role in the kinetics of amyloid deposition. Apoliprotein E (apo E), which has been found to be involved in the majority of amylodoses, helps to overcome the initially unfavorable kinetic barrier of amyloid fibril formation, and typically shows isoform-specific effects that influence the epidemiology, clinical course, and pathological aspects of disease. The modulatory effect of apolipoproteins may not be evident if either the amyloid-prone protein is present in great excess or carries a mutation rendering it extremely amyloidogenic. Under these conditions amyloid deposition can occur without the help of chaperones. The exact binding site of amyloidogenic peptides on apo E and other apolipoproteins is unclear, and it remains unknown if it is a linear or a conformational epitope. Mapping this site could provide a means to clarify the mechanism of interaction between apolipoproteins and their peptide ligands, as well as allowing the generation of peptidomimetic compounds that block this interaction in an effort to develop successful treatment approaches. It appears that apo E has one universal site interacting with various amyloidogenic peptides regardless of their sequence. Targeting the pathological chaperones of amyloidoses such as apo E appears to be an attractive approach from a pharmacokinetic point of view, because the concentration of these molecules in amyloid deposits is usually 100 to 200 times lower than the concentration of the actual fibril-forming peptide (Ma et al., 1994; Wisniewski et al., 1994a). In addition, blocking this interaction between apo E and amyloidogenic proteins is unlikely to be associated with any significant toxicity, making this a significant therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonzo, N.C., Hyman, B.T., Rebeck, G.W., and Greenberg, S.M. (1998). Progression of cerebral amyloid angiopathy: accumulation of amyloid-beta 40 in affected vessels. J. Neuropathol. Exp. Neurol. 57:353–359.

    PubMed  CAS  Google Scholar 

  • Amouyel, P., Vidal, O., Launay, J.M., and Laplanche, J.L. (1994). The apolipoprotein-e alleles as major susceptibility factors for Creutzfeldt-Jakob disease. Lancet 344:1315–1318.

    Article  PubMed  CAS  Google Scholar 

  • Andreola, A., Bellotti, V., Giorgetti, S., Mangione, P., Obici, L., Stoppini, M., Torres, J., Monzani, E., Merlini, G., and Sunde, M. (2003). Conformational switching and fibrillogenesis in the amyloidogenic fragment of apolipoprotein A-I. J. Biol. Chem. 278:2444–2451.

    Article  PubMed  CAS  Google Scholar 

  • Antzutkin, O.N., Balbach, J.J., and Tycko, R. (2003). Site-specific identification of non-beta-strand conformations in Alzheimer’s beta-amyloid fibrils by solid-state NMR. Biophys. J. 84:3326–3335.

    PubMed  CAS  Google Scholar 

  • Aucouturier, P., Kascsak, R.J., Frangione, B., and Wisniewski, T. (1999). Biochemical and conformational variability of human prion strains in sporadic Creutzfeldt-Jakob disease. Neurosci. Lett. 274:33–36.

    Article  PubMed  CAS  Google Scholar 

  • Bales, K.R., Verina, T., Dodel, R.C., Du, Y.S., Altstiel, L., Bender, M., Hyslop, P., Johnstone, E.M., Little, S.P., Cummins, D.J., Piccardo, P., Ghetti, B., and Paul, S.M. (1997). Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet. 17:263–264.

    Article  PubMed  CAS  Google Scholar 

  • Bales, K.R., Verina, T., Cummins, D.J., Du, Y., Dodel, R.C., Saura, J., Fishman, C.E., DeLong, C.A., Piccardo, P., Petegnief, V., Ghetti, B., and Paul, S.M. (1999). Apolipoprotein E is essential for amyloid deposition in the APPV717F transgenic mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 96:15233–15238.

    Article  PubMed  CAS  Google Scholar 

  • Barrow, C.J., Yasuda, A., Kenny, P.T., and Zagorski, M.G. (1992). Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer’s disease. Analysis of circular dichroism spectra. J. Mol. Biol. 225:1075–1093.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, M.H., Kallijarvi, J., Lankinen, H., Soto, C., and Haltia, M. (2000). Apolipoprotein E includes a binding site which is recognized by several amyloidogenic polypeptides. Biochem. J. 349:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Beissinger, M., and Buchner, J. (1998). How chaperones fold proteins. Biol. Chem. 379:245–259.

    PubMed  CAS  Google Scholar 

  • Benson, M.D., Liepnieks, J.J., Yazaki, M., Yamashita, T., Asl, K.H., Guenther, B., and Kluve-Beckerman, B. (2001). A new human hereditary amyloidosis: the result of a stop-codon mutation in the apolipoprotein AII gene. Genomics 72:272–277.

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom, J., Murphy, C., Eulitz, M., Weiss, D.T., Westermark, G.T., Solomon, A., and Westermark, P. (2001). Codeposition of apolipoprotein A-IV and transthyretin in senile systemic (ATTR) amyloidosis. Biochem. Biophys. Res. Commun. 285:903–908.

    Article  PubMed  CAS  Google Scholar 

  • Booth, D.R., Tan, S.Y., Booth, S.E., Tennent, G.A., Hutchinson, W.L., Hsuan, J.J., Totty, N.F., Truong, O., Soutar, A.K., Hawkins, P.N., Bruguera, M., Caballeria, J., Solé, M., Campistol, J.M., and Pepys, M.B. (1996). Hereditary hepatic and systemic amyloidosis caused by a new deletion/insertion mutation in the apolipoprotein Al gene. J. Clin. Invest. 97:2714–2721.

    PubMed  CAS  Google Scholar 

  • Bornebroek, M., Haan, J., van Duinen, S.G., Maat Schieman, M.L.C., Van Buchem, M.A., Bakker, E., Van Broeckhoven, C., and Roos, R.A.C. (1997). Dutch hereditary cerebral amyloid angiopathy: structural lesions and apolipoprotein E genotype. Ann. Neurol. 41:695–698.

    Article  PubMed  CAS  Google Scholar 

  • Boyett, K.W., DiCarlo, G., Jantzen, P.T., Jackson, J., O’Leary, C., Wilcock, D., Morgan, D., and Gordon, M.N. (2003). Increased fibrillar beta-amyloid in response to human C1q injections into hippocampus and cortex of APP + PS1 transgenic mice. Neurochem. Res. 28:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Boyles, J.K., Zoellner, C.D., Anderson, L.J., Kosik, L.M., Pitas, R.E., Weisgraber, K.H., Hui, D.Y., Mahley, R.W., Gebicke-Haerter, P.J., Ignatias, M.J., and Shooter, E.M. (1989). A role for apolipoprotein E, apoprotein A-1, low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the sciatic nerve. J. Clin. Invest. 83:1015–1031.

    PubMed  CAS  Google Scholar 

  • Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henschen, A., Yates, J., Cotman, C., and Glabe, C. (1992). Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J. Biol. Chem. 267:546–554.

    PubMed  CAS  Google Scholar 

  • Caballeria, J., Bruguera, M., Sole, M., Campistol, J.M., and Rodes, J. (2001). Hepatic familial amyloidosis caused by a new mutation in the apolipoprotein AI gene: clinical and pathological features. Am. J. Gastroenterol. 96: 1872–1876.

    PubMed  CAS  Google Scholar 

  • Castano, E.M., Prelli, F., Pras, M., and Frangione, B. (1995a). Apolipoprotein-E carboxyl-terminal fragments are complexed to amyloid-a and amyloid-l-implications for amyloidogenesis and Alzheimers disease. J. Biol. Chem. 270: 17610–17615.

    Article  PubMed  CAS  Google Scholar 

  • Castano, E.M., Prelli, F., Wisniewski, T., Golabek, A., Kumar, R.A., Soto, C., and Frangione, B. (1995b). Fibrillogenesis in Alzheimers-disease of amyloid-beta peptides and apolipoprotein-e. Biochem. J. 306:599–604.

    PubMed  CAS  Google Scholar 

  • Castaño, E.M., Prelli, F., Wisniewski, T., Golabek, A.A., Kumar, R.A., Soto, C., and Frangione, B. (1995). Fibrillogenesis in Alzheimer’s disease of amyloid beta peptides and apolipoprotein E. Biochem. J. 306:599–604.

    PubMed  Google Scholar 

  • Chang, Y.T., Tsai, S.F., Wang, W.J., Hong, C.J., Huang, C.Y., and Wong, C.K. (2001). A study of apolipoproteins E and A-I in cutaneous amyloids. Br. J. Dermatol. 145:422–427.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, J., Cervenakova, L., Lee, H.S., Estupinan, J., Richardson, S., Vnencak-Jones, C.L., Gajdusek, D.C., Korczyn, A.D., Brown, P., and Goldfarb, L.G. (1998). APOE in non-Alzheimer amyloidoses-transmissible spongiform encephalopathies. Neurology 51:548–553.

    PubMed  CAS  Google Scholar 

  • Choi, N.H., Nakano, Y., Tobe, T., Mazda, T., and Tomita, M. (1990a). Incorporation of Sp-40,40 into the soluble membrane attack complex (Smac, Sc5B-9) of complement. Int. Immunol. 2:413–417.

    Article  PubMed  CAS  Google Scholar 

  • Choi, N.H., Tobe, T., Hara, K., Yoshida, H., and Tomita, M. (1990b). Sandwich ELISA assay for quantitative measurement of SP-40,40 in seminal plasma and serum. J. Immunol. Methods 131:159–163.

    Article  PubMed  CAS  Google Scholar 

  • Choi, N.H., Tobe, T., Hara, K., Yoshida, H., and Tomita, M. (1990c). Sandwich Elisa assay for quantitative measurement of Sp-40,40 in seminal plasma and serum. J. Immunol. Methods 131:159–163.

    Article  PubMed  CAS  Google Scholar 

  • Choi-Miura, N.H., Ihara, Y., Fukuchi, K., Takeda, M., Nakano, Y., Tobe, T., and Tomita, M. (1992). SP-40,40 is a constituent of Alzheimer’s amyloid. Acta Neuropathol. 83:260–264.

    Article  PubMed  CAS  Google Scholar 

  • Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923.

    Article  PubMed  CAS  Google Scholar 

  • Coria, F., Castaño, E.M., Prelli, F., Larrondo-Lillo, M., vanDuinen, S., Shelanski, M.L., and Frangione, B. (1988). Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis. Lab. Invest. 58:454–457.

    PubMed  CAS  Google Scholar 

  • Cui, D., Hoshii, Y., Takahashi, M., Kawano, H., Iwata, T., and Ishihara, T. (1998). An immunohistochemical study of amyloid P component, apolipoprotein E and ubiquitin in human and murine amyloidoses. Pathol. Int. 48:362–367.

    PubMed  CAS  Google Scholar 

  • Danik, M., Chabot, J.G., Mercier, C., Benabid, A.L., Chauvin, C., Quirion, R., and Suh, M. (1991). Human gliomas and epileptic foci express high-levels of a messenger-RNA related to rat testicular sulfated glycoprotein-2, a purported marker of cell-death. Proc. Natl. Acad. Sci. USA 88:8577–8581.

    Article  PubMed  CAS  Google Scholar 

  • Deane, R., Yan, S.D., Submamaryan, R.K., Larue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., Zhu, H., Ghiso, J., Frangione, B., Stern, A., Schmidt, A.M., Armstrong, D.L., Arnold, B., Liliensiek, B., Nawroth, P., Hofman, F., Kindy, M., Stern, D., and Zlokovic, B. (2003). RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9:907–913.

    Article  PubMed  CAS  Google Scholar 

  • DeArmond, S.J., Kretzschmar, H., and Prusiner, S.B. (2002). Prion diseases. In: Graham, D.I. and Lantos, P. (eds.). Greenfield’s neuropathology. London: Arnold, pp. 273–324.

    Google Scholar 

  • Del Bo, R., Comi, G.P., Bresolin, N., Castelli, E., Conti, E., Degiuli, A., Ausenda, C.D., and Scarlato, G. (1997). The apolipoprotein E É›4 allele causes a faster decline of cognitive performances in Down’s syndrome subjects. J. Neurol. Sci. 145:87–91.

    Article  PubMed  Google Scholar 

  • Del Bo, R., Comi, G., Giorda, R., Crimi, M., Locatelli, F., Martinelli-Boneschi, F., Pozzoli, U., Castelli, E., Bresolin, N., and Scarlato, G. (2003). The 129 codon polymorphism of the prion protein gene influences earlier cognitive performance in Down Syndrome subjects. J. Neurol. 250:688–692.

    Article  PubMed  CAS  Google Scholar 

  • de Sousa, M.M., Vital, C., Ostler, D., Fernandes, R., Pouget-Abadie, J., Carles, D., and Saraiva, M.J. (2000). Apolipoprotein Al and transthyretin as components of amyloid fibrils in a kindred with apoAl Leu178His amyloidosis. Am. J. Pathol. 156:1911–1917.

    PubMed  Google Scholar 

  • De Strooper, B. (2003). Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron 38:9–12.

    Article  PubMed  Google Scholar 

  • Diedrich, J.F., Minnigan, H., Carp, R.I., Whitaker, J.N., Race, R., Frey, W., II., and Haase, A.T. (1991). Neuropathological changes in scrapie and Alzheimer’s disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. J. Virol. 65:4759–4768.

    PubMed  CAS  Google Scholar 

  • Dietzsch, E., Murphy, B.F., Kirszbaum, L., Walker, I.D., and Garson, O.M. (1992). Regional localization of the gene for clusterin (Sp-40,40 gene symbol Cli) to human-chromosome 8P12-]P21. Cytogenet. Cell Genet. 61:178–179.

    PubMed  CAS  Google Scholar 

  • Dong, L.M., Wilson, C., Wardell, M.R., Simmons, T., Mahley, R.W., Weisgraber, K.H., and Agard, D.A. (1994). Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J. Biol. Chem. 269:22358–22365.

    PubMed  CAS  Google Scholar 

  • Ellis, R.J., Olichney, J.M., Thal, L.J., Mirra, S.S., Morris, J.C., Beekly, D., and Heyman, A. (1996). Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience. Neurology 46:1592–1596.

    PubMed  CAS  Google Scholar 

  • Fadika, G.O., and Baumann, M. (2002). Peptides corresponding to gelsolin derived amyloid of the Finnish type (AGel(FIN)) adopt two distinct forms in solution of which only one can polymerize into amyloid fibrils and form complexes with apoE. Amyloid J. Protein Fold. Disord. 9:75–82.

    CAS  Google Scholar 

  • Frangione, B., Wisniewski, T., and Ghiso, J. (1994). Chaperoning Alzheimer’s amyloid. Neurobiol. Aging 15:97–99.

    Article  Google Scholar 

  • Fukumoto, H., Cheung, B.S., Hyman, B.T., and Irizarry, M.C. (2002). Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch. Neurol. 59:1381–1389.

    Article  PubMed  Google Scholar 

  • Fukumoto, H., Rosene, D.L., Moss, M.B., Raju, S., Hyman, B.T., and Irizarry, M.C. (2004). Beta-secretase activity increases with aging in human, monkey, and mouse brain. Am. J. Pathol. 164:719–725.

    PubMed  CAS  Google Scholar 

  • Furumoto, H., Shimizu, T., Muto, M., Hashimoto, Y., and Nakamura, K. (2002). Apolipoprotein E4 is associated with primary localized cutaneous amyloidosis. J. Invest. Dermatol. 119:532–533.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, G., Wisniewski, T., Choi-Miura, N.H., Ghiso, J., and Frangione, B. (1994). Potential role of apolipoprotein-E in fibrillogenesis. Am. J. Pathol. 145:526–530.

    PubMed  CAS  Google Scholar 

  • Gandy, S., Caporaso, G., Buxbaum, J., Frangione, B., and Greengard, P. (1994). APP processing, Aβ-amyloidogenesis, and the pathogenesis of Alzheimer’s disease. Neurobiol. Aging 115:253–256.

    Article  PubMed  CAS  Google Scholar 

  • Garceau, D., Gurbindo, C., and Laurin, J. (2001). Safety, tolerability and pharmacokinetic profile of Fibrillexâ„¢ (anti-AA amyloid agent) in healthy and renal impaired subjects. In: Bely, M. and Apathy, A. (eds). Proc. IXth Int. Symp. Amyloidosis, Budapest, pp. 116–118.

    Google Scholar 

  • Gejyo, F., Suzuki, S., Kimura, H., Imura, T., Ei, I., Hasegawa, H., and Arakawa, M. (1997). Increased risk of dialysisrelated amyloidosis in patients with the apolipoprotein E4 allele. Amyloid Int. J. Exp. Clin. Invest. 4:13–17.

    CAS  Google Scholar 

  • Ghersi-Egea, J.F., Gorevic, P.D., Ghiso, J., Frangione, B., Patlak, C.S., and Fenstermacher, J.D. (1996). Fate of cerebrospinal fluid-borne amyloid β-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J. Neurochem. 67:880–883.

    Article  PubMed  CAS  Google Scholar 

  • Ghiso, J., Matsubara, E., Koudinov, A., Choi-Miura, N.H., Tomita, M., Wisniewski, T., and Frangione, B. (1993). The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem. J. 293:27–30.

    PubMed  CAS  Google Scholar 

  • Ghiso, J., Wisniewski, T., and Frangione, B. (1994). Unifying features of systemic and cerebral amyloidosis. Mol. Neurobiol. 8:49–64.

    PubMed  CAS  Google Scholar 

  • Ghiso, J., Calero, M., Matsubara, E., Governale, S., Chuba, J., Beavis, R., and Wisniewski, T. (1997). Alzheimer’s soluble amyloid β is a normal component of urine. FEBS Lett. 408:105–108.

    Article  PubMed  CAS  Google Scholar 

  • Ghiso, J., Vidal, R., Rostagno, A., Miravalle, L., Holton, J.L., Mead, S., Revesz, T., Plant, G., and Frangione, B. (2000). Amyloidogenesis in familial British dementia is associated with a genetic defect on chromosome 13. Mol. Basis Dementia 920:84–92.

    CAS  Google Scholar 

  • Gillmore, J.D., Hawkins, P.N., and Pepys, M.B. (1997). Amyloidosis: a review of recent diagnostic and therapeutic developments. Br. J. Haematol. 99:245–256.

    Article  PubMed  CAS  Google Scholar 

  • Golabek, A.A., Marques, M., Lalowski, M., and Wisniewski, T. (1995). Amyloid β binding proteins in vitro and in normal human cerebrospinal fluid. Neurosci. Lett. 191:79–82.

    Article  PubMed  CAS  Google Scholar 

  • Golabek, A.A., Soto, C., Vogel, T., and Wisniewski, T. (1996). The interaction between apolipoprotein E and Alzheimer’s amyloid β-peptide is dependent on β-peptide conformation. J. Biol. Chem. 271:10602–10606.

    Article  PubMed  CAS  Google Scholar 

  • Golabek, A.A., Kida, E., Walus, M., Perez, C., Wisniewski, T., and Soto, C. (2000). Sodium dodecyl sulfate-resistant complexes of Alzheimer’s amyloid β-peptide with the N-terminal, receptor binding domain of apolipoprotein E. Biophys. J. 79:1008–1015.

    PubMed  CAS  Google Scholar 

  • Gorevic, P.D., Castaño, E.M., Sarma, R., and Frangione, B. ((1987). TTen to fourteen residue peptides of Alzheimer’s disease protein are sufficient for amyloid fibril formation and its characteristic x-ray diffraction pattern. Biochem. Biophys. Res. Commun. 1147:854–862.

    Article  PubMed  CAS  Google Scholar 

  • Gouras, G.K., Tsai, J., Naslund, J., Vincent, B., Edgar, M., Checler, F., Greenfield, J.P., Haroutunian, V., Buxbaum, J.D., Xu, H.X., Greengard, P., and Relkin, N.R. (2000a). Intraneuronal A beta 42 accumulation in human brain. Am. J. Pathol. 156:15–20.

    PubMed  CAS  Google Scholar 

  • Gouras, G.K., Xu, H.X., and Edgar, M. (2000b). Intraneuronal beta-amyloid with aging and Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 59:421.

    Google Scholar 

  • Greenberg, S.M., Briggs, M.E., Hyman, B.T., Kokoris, G.J., Takis, C., Kanter, D.S., Kase, C.S., and Pessin, M.S. (1996). Apolipoprotein E É›4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. Stroke 27:1333–1337.

    PubMed  CAS  Google Scholar 

  • Greenberg, S.M., Vonsattel, J.P.G., Segal, A.Z., Chiu, R.I., Clatworthy, A.E., Liao, A., Hyman, B.T., and Rebeck, G.W. (1998). Association of apolipoprotein E epsilon 2 and vasculopathy in cerebral amyloid angiopathy. Neurology 50: 961–965.

    PubMed  CAS  Google Scholar 

  • Griswold, M.D., Roberts, K., and Bishop, P. (1986). Purification and characterization of a sulfated glycoprotein secreted by sertoli cells. Biochemistry 25:7265–7270.

    Article  PubMed  CAS  Google Scholar 

  • Haltia, M., Prelli, F., Ghiso, J., Kiuru, S., Somer, H., Palo, J., and Frangione, B. (1990). Amyloid protein in familial amyloidosis (Finnish type) is homologous to gelsolin, an actin-binding protein. Biochem. Biophys. Res. Commun. 167:927–932.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, K., Rauch, J., Urban, J., Parczyk, K., Diel, P., Pilarsky, C., Appel, D., Haase, W., Mann, K., Weller, A., and Kochbrandt, C. (1991). Molecular-cloning of Gp 80, a glycoprotein complex secreted by kidney-cells in vitro and in vivo—a link to the reproductive-system and to the complement cascade. J. Biol. Chem. 266: 9924–9931.

    PubMed  CAS  Google Scholar 

  • Hasegawa, H., Nishi, S.I., Ito, S., Saeki, T., Kuroda, T., Kimura, H., Watababe, T., Nakano, M., Gejyo, F., and Arakawa, M. (1996). High prevalence of serum apolipoprotein E4 isoprotein in rheumatoid arthritis patients with amyloidosis. Arthritis Rheum. 39:1728–1732.

    Article  PubMed  CAS  Google Scholar 

  • Hatters, D.M., Lindner, R.A., Carver, J.A., and Howlett, G.J. (2001). The molecular chaperone, alpha-crystallin, inhibits amyloid formation by apolipoprotein C-II. J. Biol. Chem. 276:33755–33761.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, P.N. (2003). Hereditary systemic amyloidosis with renal involvement. J. Nephrol. 16:443–448.

    PubMed  CAS  Google Scholar 

  • Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C.L., and Beyreuther, K. (1991). Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer’s disease. J. Mol. Biol. 218:149–163.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman, D.M., Bales, K.R., Wu, S., Bhat, P., Parsadanian, M., Fagan, A.M., Chang, L.K., Sun, Y., and Paul, S.M. (1999). Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer’s disease. J. Clin. Invest. 103:R15–R21.

    PubMed  CAS  Google Scholar 

  • Holtzman, D.M., Bales, K.R., Tenkova, T., Fagan, A.M., Parsadanian, M., Sartorius, L.J., Mackey, B., Olney, J., McKeel, D., Wozniak, D., and Paul, S.M. (2000a). Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 97:2892–2897.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman, D.M., Fagan, A.M., Mackey, B., Tenkova, T., Sartorius, L., Paul, S.M., Bales, K.R., Hsiao Ashe, K., Irizarry, M.C., and Hyman, B.T. (2000b). Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer’s disease model. Ann. Neurol. 47:739–747.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y.D., Liu, X.Q., Wyss-Coray, T., Brecht, W.J., Sanan, D.A., and Mahley, R.W. (2001). Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc. Natl. Acad. Sci. USA 98:8838–8843.

    Article  PubMed  CAS  Google Scholar 

  • Ida, N., Masters, C.L., and Beyreuther, K. (1996). Rapid cellular uptake of Alzheimer amyloid βA4 peptide by cultured human neuroblastoma cells. FEBS Lett. 394:174–178.

    Article  PubMed  CAS  Google Scholar 

  • Ingelsson, M., Fukumoto, H., Newell, K.L., Growdon, J.H., Hedley-Whyte, E.T., Frosch, M.P., Albert, M.S., Hyman, B.T., and Irizarry, M.C. (2004). Early A beta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62:925–931.

    PubMed  CAS  Google Scholar 

  • Ji, Y., Permanne, B., Sigurdsson, E.M., Holtzman, D.M., and Wisniewski, T. (2001). Amyloid β0/42 clearance across the blood-brain barrier following intra-ventricular injections in wild-type, apoE knock-out and human apoE3 or E4 expressing transgenic mice. J. Alzheimer’s Dis. 3:23–30.

    CAS  Google Scholar 

  • Ji, Y., Gong, Y., Gan, W., Beach, T., Holtzman, D.M., and Wisniewski, T. (2003). Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer’s disease patients. Neuroscience 122:305–315.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K.H., Sletten, K., Hayden, D.W., Obrien, T.D., Roertgen, K.E., and Westermark, P. (1992). Pulmonary vascular amyloidosis in aged dogs—a new form of spontaneously occurring amyloidosis derived from apolipoprotein Ai. Am. J. Pathol. 141:1013–1019.

    PubMed  CAS  Google Scholar 

  • Johnson, L.V., Leitner, W.P., Rivest, A.J., Staples, M.K., Radeke, M.J., and Anderson, D.H. (2002). The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and agerelated macular degeneration. Proc. Natl. Acad. Sci. USA 99:11830–11835.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R.N., and Premkumar, D.R.D. (1995). Apolipoprotein E genotype and cerebral amyloid angiopathy. Lancet 346:1424.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R.N., Cohen, D.L., and Premkumar, D.R.D. (1996). Apolipoprotein E alleles and brain vascular pathology in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 777:266–270.

    Article  PubMed  CAS  Google Scholar 

  • Kindy, M.S., and Rader, D.J. (1998). Reduction in amyloid A amyloid formation in apolipoprotein-E-deficient mice. Am. J. Pathol. 152:1387–1395.

    PubMed  CAS  Google Scholar 

  • Kirschner, D.A., Inouye, H., Duffy, L.K., Sinclar, A., Linda, M., and Selkoe, D.J. (1987). Synthetic peptide homologous to ?protein from Alzheimer’s disease forms amyloid-like fibrils in vitro. Proc. Natl. Acad. Sci. USA 84:6953–6957.

    Article  PubMed  CAS  Google Scholar 

  • Kirszbaum, L., Bozas, S.E., and Walker, I.D. (1992). Sp-40,40, a protein involved in the control of the complement pathway, possesses a unique array of disulfide bridges. FEBS Lett. 297:70–76.

    Article  PubMed  CAS  Google Scholar 

  • Kisilevsky, R., Lemieux, L.J., Fraser, P.E., Kong, X., Hultin, P.G., and Szarek, W.A. (1995). Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat. Med. 1:143–148.

    Article  PubMed  CAS  Google Scholar 

  • Knaus, K.J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W.K., and Yee, V.C. (2001). Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat. Struct. Biol. 8:770–774.

    Article  PubMed  CAS  Google Scholar 

  • Kostner, G.M. (1989). Lipoprotein receptors and atherosclerosis. Biochem. Soc. Trans. 17:639–641.

    PubMed  CAS  Google Scholar 

  • Koudinov, A., Matsubara, E., Frangione, B., and Ghiso, J. (1994). The soluble form of Alzheimer’s amyloid beta protein is complexed to high density lipoprotein 3 and very high density lipoprotein in normal human plasma. Biochem. Biophys. Res. Commun. 205:1164–1171.

    Article  PubMed  CAS  Google Scholar 

  • LaFerla, F.M., Troncoso, J.C., Strickland, D.K., Kawas, C.H., and Jay, G. (1997). Neuronal cell death in Alzheimer’s disease correlates with apoE uptake and intracellular Aβ stabilization. J. Clin. Invest. 100:310–320.

    Article  PubMed  CAS  Google Scholar 

  • Leroy, A., and Jonas, A. (1994). Native-like structure and self-association behavior of apolipoprotein-A-I in a water Npropanol solution. Biochim. Biophys. Acta Lipids Lipid Metab. 1212:285–294.

    Article  CAS  Google Scholar 

  • Levy, E., Lopez-Otin, C., Ghiso, J., and Geltner, D. (1989). Stroke in Icelandic patients with hereditary amyloid angiopathy is related to a mutation in the cystatin C gene, and inhibitor of cysteine proteases. J. Exp. Med. 169:1771–1778.

    Article  PubMed  CAS  Google Scholar 

  • Levy, E., Carman, M.D., Fernandez-Madrid, I., Lieberburg, I., Power, M.D., vanDuinen, S.G., Bots, G.Th.A.M., Luyendijk, W., and Frangione, B. (1990a). Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1126.

    Article  PubMed  CAS  Google Scholar 

  • Levy, E., Haltia, M., Fernandez-Madrid, I., and Frangione, B. (1990b). Mutation in gelsolin gene in Finnish hereditary amyloidosis. J. Exp. Med. 172:1865–1867.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J., Dickson, D., Lin, W.L., Chisholm, L., Corral, A., Jones, G., Yen, S.H., Sahara, N., Skipper, L., Yager, D., Eckman, C., Hardy, J., Hutton, M., and McGowan, E. (2001). Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Nature 293:1489–1491.

    Google Scholar 

  • Ma, J., Yee, A., Brewer, H.B., Jr., Das, S., and Potter, H. (1994). Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372:92–94.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., Brewer, B.H., Potter, H., and Brewer, H.B., Jr. (1996). Alzheimer Aβ neurotoxicity: promotion by antichymotrypsin, apoE4; inhibition by Aβ-related peptides. Neurobiol. Aging 17:773–780.

    Article  PubMed  CAS  Google Scholar 

  • Mackic, J.B., McComb, J.G., Calero, M., Ghiso, J., Kim, K.S., Yan, S.D., Stern, D., Schmidt, A.M., Frangione, B., and Zlokovic, B.V. (1998). Human blood-brain barrier receptors for Alzheimer’s amyloid-beta 1-40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest. 102:734–743.

    PubMed  CAS  Google Scholar 

  • Mackic, J.B., Bading, J., Ghiso, J., Walker, L., Wisniewski, T., Frangione, B., and Zlokovic, B. (2002). Transport across the blood-brain barrier and differential cerebrovascular sequestration of circulating Alzheimer’s amyloid-β peptide in aged Rhesus versus aged Squirrel monkeys. Vasc. Pharmacol. 38:303–313.

    Article  CAS  Google Scholar 

  • Maestre, G., Ottman, R., Stern, Y., Gurland, B., Chun, M., Tang, M.X., Shelanski, M., Tycko, B., and Mayeux, R. (1995). Apolipoprotein E and Alzheimer’s disease: ethnic variation in genotypic risks. Ann. Neurol. 37:254–259.

    Article  PubMed  CAS  Google Scholar 

  • Mahley, R.W. (1988). Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630.

    Article  PubMed  CAS  Google Scholar 

  • Mahley, R.W., Nathan, B.P., and Pitas, R.E. (1996). Apolipoprotein E-structure, function, and possible roles in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 777:139–145.

    Article  PubMed  CAS  Google Scholar 

  • Mann, D.M.A., Pickering-Brown, S.M., Takeuchi, A., and Iwatsubo, T. (2001). Amyloid angiopathy and variability in amyloid beta deposition is determined by mutation position in presenilin-1-linked Alzheimer’s disease. Am. J. Pathol. 158:2165–2175.

    PubMed  CAS  Google Scholar 

  • Masliah, E., Samuel, W., Veinbergs, I., Mallory, M., Mante, M., and Saitoh, T. (1997). Neurodegeneration and cognitive impairment in apoE-deficient mice is ameliorated by infusion of recombinant apoE. Brain Res. 751:307–314.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, E., Frangione, B., and Ghiso, J. (1995). Characterization of apolipoprotein J-Alzheimer’s A beta interaction. J. Biol. Chem. 270:7563–7567.

    Article  PubMed  CAS  Google Scholar 

  • Mayeux, R., Stern, Y., Ottman, R., Tatemichi, T.K., Tang, M.X., Maestre, G., Ngai, C., Tycko, B., and Ginsberg, H. (1993). The apolipoprotein epsilon 4 allele in patients with Alzheimer’s disease. Ann. Neurol. 34:752–754.

    Article  PubMed  CAS  Google Scholar 

  • Mazur-Kolecka, B., Frackowiak, J., and Wisniewski, H.M. (1995). Apolipoproteins E3 and E4 induce, and transthyretin prevents accumulation of the Alzheimer’s β-amyloid peptide in cultured vascular smooth muscle cells. Brain Res. 698:217–222.

    Article  PubMed  CAS  Google Scholar 

  • Merlini, G., and Bellotti, V. (2003). Molecular mechanisms of amyloidosis. N. Engl. J. Med. 349:583–596.

    Article  PubMed  CAS  Google Scholar 

  • Merz, P.A., Wisniewski, H.M., Somerville, R.A., Bobin, S.A., Masters, C.L., and Iqbal, K. (1983). Ultrastructural morphology of amyloid fibrils from neuritic and amyloid plaques. Acta Neuropathol. 60:113–124.

    Article  PubMed  CAS  Google Scholar 

  • Monro, O.R., Mackic, J.B., Yamada, S., Segal, M.B., Ghiso, J., Maurer, C., Calero, M., Frangione, B., and Zlokovic, B.V. (2002). Substitution at codon 22 reduces clearance of Alzheimer’s amyloid-beta peptide from the cerebrospinal fluid and prevents its transport from the central nervous system into blood. Neurobiol. Aging 23:405–412.

    Article  PubMed  CAS  Google Scholar 

  • Mori, C., Spooner, E.T., Wisniewski, K.E., Wisniewski, T.M., Yamaguchi, H., Saido, T.C., Li, C., Tolan, D.R., Selkoe, D., and Lemere, C.A. (2002). Intraneuronal Aβ42 accumulation in Down syndrome brain. Amyloid 9:88–102.

    PubMed  CAS  Google Scholar 

  • Mufson, E.J., Benzing, W.C., Cole, G.M., Wang, H., Emerich, D.F., Sladek, J.R., Morrison, J.H., and Kordower, J.H. (1994). Apolipoprotein E-immunoreactivity in aged rhesus-monkey cortex—colocalization with amyloid plaques. Neurobiol. Aging 15:621–627.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Kitamoto, T., Furukawa, H., Ogomori, K., and Tateishi, J. (1995). Apolipoprotein-e in Creutzfeldt-Jakob-Disease. Lancet 345:68.

    Article  PubMed  CAS  Google Scholar 

  • Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E., and Ikeda, K. (1991). Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res. 41:163–166.

    Article  Google Scholar 

  • Namba, Y., Tsuchiya, H., and Ikeda, K. (1992). Apolipoprotein B immunoreactivity in senile plaque and vascular amyloids and neurofibrillary tangles in the brains of patients with Alzheimer’s disease. Neurosci. Lett. 134:264–266.

    Article  PubMed  CAS  Google Scholar 

  • Naslund, J., Thyberg, J., Tjernberg, L.O., Wernstedt, C., Karlstrom, A.R., Bogdanovic, N., Gandy, S.E., Lannfelt, L., Terenius, L., and Nordstedt, C. (1995). Characterization of stable complexes involving apolipoprotein E and the amyloid beta peptide in Alzheimer’s disease brain. Neuron 15:219–228.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, B.P., Bellosta, S., Sanan, D.A., Weisgraber, K.H., Mahley, R.W., and Pitas, R.E. (1994). Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264:850–852.

    Article  PubMed  CAS  Google Scholar 

  • Nochlin, D., Bird, T.D., Nemens, E.J., Ball, M.J., and Sumi, S.M. (1998). Amyloid angiopathy in a Volga German family with Alzheimer’s disease and a presenilin-2 mutation ((NI)-I-141). Ann. Neurol. 43:131–135.

    Article  PubMed  CAS  Google Scholar 

  • Paresce, D.M., Ghosh, R.N., and Maxfield, F.R. (1996). Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17:553–565.

    Article  PubMed  CAS  Google Scholar 

  • Pepys, M.B., Herbert, J., Hutchinson, W.L., Tennent, G.A., Lachmann, H.J., Gallimore, J.R., Lovat, L.B., Bartfai, T., Alanine, A., Hertel, C., Hoffmann, T., Jakob-Roetne, R., Norcross, R.D., Kemp, J.A., Yamamura, K., Suzuki, M., Taylor, G.W., Murray, S., Thompson, D., Purvis, A., Kolstoe, S., Wood, S.P., and Hawkins, P.N. (2002). Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417:254–259.

    Article  PubMed  CAS  Google Scholar 

  • Petkova, A.T., Ishii, Y., Balbach, J.J., Antzutkin, O.N., Leapman, R.D., Delaglio, F., and Tycko, R. (2002). A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA 99:16742–16747.

    Article  PubMed  CAS  Google Scholar 

  • Petkova, A.T., Buntkowsky, G., Dyda, F., Leapman, R.D., Yau, W.M., and Tycko, R. (2004). Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J. Mol. Biol. 335:247–260.

    Article  PubMed  CAS  Google Scholar 

  • Pillot, T., Goethals, M., Vanloo, B., Lins, L., Brasseur, R., Vandekerckhove, J., and Rosseneu, M. (1997). Specific modulation of the fusogenic properties of the Alzheimer β-amyloid peptide by apolipoprotein E isoforms. Eur. J. Biochem. 243:650–659.

    Article  PubMed  CAS  Google Scholar 

  • Pitas, R.E., Boyles, J.K., Lee, S.H., Hui, D., and Weisgraber, K.H. (1987). Lipoproteins and their receptors in the centralnervous-system—characterization of the lipoproteins in cerebrospinal-fluid and identification of apolipoprotein-B,E(Ldl) receptors in the brain. J. Biol. Chem. 262:14352–14360.

    PubMed  CAS  Google Scholar 

  • Poduslo, J.F., Curran, G.L., Sanyal, B., and Selkoe, D.J. (1999). Receptor-mediated transport of human amyloid β-protein 1-40 and 1-42 at the blood-brain barrier. Neurobiol. Dis. 6:190–199.

    Article  PubMed  CAS  Google Scholar 

  • Potter, H., Wefes, I.M., and Nilsson, L.N. (2001). The inflammation-induced pathological chaperones ACT and apo-E are necessary catalysts of Alzheimer amyloid formation. Neurobiol. Aging 22:923–930.

    Article  PubMed  CAS  Google Scholar 

  • Premkumar, D.R.D., Cohen, D.L., Hedera, P., Friedland, R.P., and Kalaria, R.N. (1996). Apolipoprotein E-ε4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease. Am. J. Pathol. 148:2083–2095.

    PubMed  CAS  Google Scholar 

  • Prusiner, S.B., Bolton, D.C., Bowman, K.A., Cochran, S.P., Groth, D.F., and McKinley, M.P. (1983a). Identification of a 30,000 molecular-weight protein purifying with scrapie prions. Clin. Res. 31:A498.

    Google Scholar 

  • Prusiner, S.B., Bolton, D.C., Bowman, K.A., Cochran, S.P., Groth, D.F., and McKinley, M.P. (1983b). Properties of a 30,000 Mw protein-component of the scrapie prion. Fed. Proc. 42:849.

    Google Scholar 

  • Prusiner, S.B., McKinley, M.P., Bowman, K.A., Bolton, D.C., Bendheim, P.E., Groth, D.F., and Glenner, G.G. (1983c). Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358.

    Article  PubMed  CAS  Google Scholar 

  • Rader, D.J. (2003). Regulation of reverse cholesterol transport and clinical implications. Am. J. Cardiol. 92:42J–49J.

    Article  PubMed  CAS  Google Scholar 

  • Rebeck, G.W., Reiter, J.S., Strickland, D.K., and Hyman, B.T. (1993). Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11:575–580.

    Article  PubMed  CAS  Google Scholar 

  • Relkin, N.R., Tanzi, R., Breitner, J., Farrer, L., Gandy, S., Haines, J., Hyman, B., Mullan, M., Poirer, J., Strittmatter, W., Folstein, M., Farlow, M., Mayeux, R., Petersen, R., Roses, A., Schenk, D., Small, G., Van Gool, W., Cook-Deegan, R., Fleck, L., Kapp, M., Karlinsky, H., Pericak-Vance, M., and Post, S. (1996). Apolipoprotein E genotyping in Alzheimer’s disease. Lancet 347:1091–1095.

    Google Scholar 

  • Revesz, T., Holton, J.L., Lashley, T., Plant, G., Rostagno, A., Ghiso, J., and Frangione, B. (2002). Sporadic and familial cerebral amyloid angiopathies. Brain Pathol. 12:343–357.

    Article  PubMed  Google Scholar 

  • Revesz, T., Ghiso, J., Lashley, T., Plant, G., Rostagno, A., Frangione, B., and Holton, J.L. (2003). Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J. Neuropathol. Exp. Neurol. 62:885–898.

    PubMed  CAS  Google Scholar 

  • Roertgen, K.E., Lund, E.M., O’Brien, T.D., Westermark, P., Hayden, D.W., and Johnson, K.H. (1995). Apolipoprotein Al-derived pulmonary vascular amyloid in aged dogs. Am. J. Pathol. 147:1311–1317.

    PubMed  CAS  Google Scholar 

  • Rogers, D.P., Roberts, L.M., Lebowitz, J., Datta, G., Anantharamaiah, G.M., Engler, J.A., and Brouillette, C.G. (1998). The lipid-free structure of apolipoprotein A-I: effects of amino-terminal deletions. Biochemistry 37:11714–11725.

    Article  PubMed  CAS  Google Scholar 

  • Rostagno, A., Magnotti, L., Tomidokoro, Y., Frangione, B., Ghiso, J., Revesz, T., Lashley, T., and Holton, J. (2002). Complement activation in chromosome 13 dementias. Neurobiol. Aging 23:S454–S455.

    Google Scholar 

  • Sadowski, M., Ji, Y., Scholtzova, H., Sigurdsson, E.M., and Wisniewski, T. (2003). Blocking apolipoprotein E/β-amyloid interaction as a therapeutic approach for Alzheimer’s disease. Neurology 60:68.

    Google Scholar 

  • Sadowski, M., Pankiewicz, J., Scholtzova, H., Ripellino, J., Li, Y., Schmidt, S.D., Mathews, P.M., Fryer, J., Holtzman, D., Sigurdsson, E.M., and Wisniewski, T. (2004). A synthetic peptide blocking the apolipoprotein E/beta-amyloid binding mitigates beta-amyloid toxicity and fibril formation in vitro and reduces beta-amyloid plaques in transgenic mice. Am. J. Pathol. 165:937–948.

    PubMed  CAS  Google Scholar 

  • Salvatore, M., Seeber, A.C., Nacmias, B., Petraroli, R., D’Alessandro, M., Sorbi, S., and Pocchiari, M. (1995). Apolipoprotein E in sporadic and familial Creutzfeldt-Jakob disease. Neurosci. Lett. 199:95–98.

    Article  PubMed  CAS  Google Scholar 

  • Sanan, D.A., Weisgraber, K.H., Russell, S.J., Mahley, R.W., Huang, D., Saunders, A., Schmechel, D., Wisniewski, T., Frangione, B., Roses, A.D., and Strittmatter, W.J. (1994). Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J. Clin. Invest. 94:860–869.

    PubMed  CAS  Google Scholar 

  • Saunders, A.M., Schmader, K., Breitner, J.C.S., Benson, M.D., Brown, W.T., Goldfarb, L., Goldgaber, D., Manwaring, M.G., Szymanski, M.H., McCown, N., Dole, K.C., Schmechel, D.E., Strittmatter, W.J., Pericakvance, M.A., and Roses, A.D. (1993a). Apolipoprotein-E-epsilon-4 allele distributions in late-onset Alzheimers-disease and in other amyloid-forming diseases. Lancet 342:710–711.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, A.M., Strittmatter, W.J., Schmechel, D., Georgehyslop, P.H.S., Pericakvance, M.A., Joo, S.H., Rosi, B.L., Gusella, J.F., Crappermaclachlan, D.R., Alberts, M.J., Hulette, C., Crain, B., Goldgaber, D., and Roses, A.D. (1993b). Association of apolipoprotein-e allele epsilon-4 with late-onset familial and sporadic Alzheimers-disease. Neurology 43:1467–1472.

    PubMed  CAS  Google Scholar 

  • Saunders, A.M., Strittmatter, W.J., Schmechel, D., Pericakvance, M.A., and Roses, A.D. (1993c). Apolipoprotein E4 is associated with late-onset familial and sporadic Alzheimers-disease. Am. J. Hum. Genet. 53:152.

    Google Scholar 

  • Schmechel, D.E., Saunders, A.M., Strittmatter, W.J., Crain, B.J., Hulette, C.M., Joo, S.H., Pericak-Vance, M.A., Goldgaber, D., and Roses, A.D. (1993). Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:9649–9653.

    Article  PubMed  CAS  Google Scholar 

  • Schupf, N. (2002). Genetic and host factors for dementia in Down’s syndrome. Br. J. Psychiatry 180:405–410.

    Article  PubMed  Google Scholar 

  • Schupf, N., Kapell, D., Lee, J.H., Zigman, W., Canto, B., Tycko, B., and Mayeux, R. (1996). Onset of dementia is associated with apolipoprotein E É›4 in Down’s syndrome. Ann. Neurol. 40:799–801.

    Article  PubMed  CAS  Google Scholar 

  • Segrest, J.P., Garber, D.W., Brouillette, C.G., Harvey, S.C., and Anantharamaiah, G.M. (1994). The amphipathic alpha-helix—a multifunctional structural motif in plasma apolipoproteins. Adv. Protein Chem. 45:303–369.

    PubMed  CAS  Google Scholar 

  • Selkoe, D.J. (1995). Alzheimer’s disease. Missense on the membrane. Nature 375:734–735.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D.J. (1997). Neuroscience—Alzheimer’s disease: genotypes, phenotype, and treatments. Science 275:260–231.

    Article  Google Scholar 

  • Selkoe, D.J. (2000). The origins of Alzheimer disease: A is for amyloid. J. Am. Med. Assoc. 283:1615–1617.

    Article  CAS  Google Scholar 

  • Selkoe, D.J. (2003). Folding proteins in fatal ways. Nature 426:900–904.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, M., Yamada, S., Kumar, S., Calero, M., Bading, J., Frangione, B., Holtzman, D., Miller, C.A., Strickland, D.K., Ghiso, J., and Zlokovic, B. (2002). Clearance of Alzheimer’s amyloid-β1-40 peptide from brain by LDL receptorrelated protein-1 at the blood-brain barrier. J. Clin. Invest. 106:1489–1499.

    Google Scholar 

  • Shuvaev, V.V. and Siest, G. (1996). Interaction between human amphipathic apolipoproteins and amyloid β-peptide: surface plasmon resonance studies. FEBS Lett. 383:9–12.

    Article  PubMed  CAS  Google Scholar 

  • Snow, A.D., Willner, J., and Kisilevsky, R. (1987). Sulphated glycosaminoglycans: a common constituent of all amyloid? Lab. Invest. 56:120–124.

    PubMed  CAS  Google Scholar 

  • Snow, A.D., Kisilevsky, R., Willmer, J., Prusiner, S.B., and DeArmond, S.J. (1989). Sulfated glycosaminoglycans in amyloid plaques of prion diseases. Acta Neuropathol. 77:337–342.

    Article  PubMed  CAS  Google Scholar 

  • Snow, A.D., Wight, T.N., Nochlin, D., Koike, Y., Kimata, K., DeArmond, S.J., and Prusiner, S.B. (1990). Immunolocalization of heparin sulfate proteoglycans to the prion amyloid plaques of Gerstmann-Straussler-Scheinker syndrome, Creutzfeldt-Jacob disease and scrapie. Lab. Invest. 63:601–611.

    PubMed  CAS  Google Scholar 

  • Soto, C., Castaño, E.M., Prelli, F., Kumar, R.A., and Baumann, M. (1995). Apolipoprotein E increases the fibrillogenic potential of synthetic peptides derived from Alzheimer’s, gelsolin and AA amyloids. FEBS Lett. 371:110–114.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, H., Revesz, T., Neumann, M., Romig, H., Grim, M.G., Pesold, B., Kretzschmar, H.A., Hardy, J., Holton, J.L., Baumeister, R., Houlden, H., and Haass, C. (2001). A pathogenic presenilin-1 deletion causes abberrant A beta 42 production in the absence of congophilic amyloid plaques. J. Biol. Chem. 276:7233–7239.

    Article  PubMed  CAS  Google Scholar 

  • Stine, W.B., Dahlgren, K.N., Krafft, G.A., and LaDu, M.J. (2003). In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J. Biol. Chem. 278:11612–11622.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S., and Roses, A.D. (1993a). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:1977–1981.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, W.J., Weisgraber, K.H., Huang, D.Y., Dong, L.M., Salvesen, G.S., Pericak-Vance, M., Schmechel, D., Saunders, A.M., Goldgaber, D., and Roses, A.D. (1993b). Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:8098–8102.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., Hoshii, Y., Kawano, H., Gondo, T., Yokota, T., Okabayashi, H., Shimada, I., and Ishihara, T. (1998). Ultrastructural evidence for the formation of amyloid fibrils within cardiomyocytes in isolated atrial amyloid. Amyloid Int. J. Exp. Clin. Invest. 5:35–42.

    CAS  Google Scholar 

  • Takahashi, R.H., Almeida, C.G., Kearney, P.F., Yu, F.M., Lin, M.T., Milner, T.A., and Gouras, G.K. (2004). Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J. Neurosci. 24:3592–3599.

    Article  PubMed  CAS  Google Scholar 

  • Takao, M., Ghetti, B., Hayakawa, I., Ikeda, E., Fukuuchi, Y., Miravalle, L., Piccardo, P., Murrell, J.R., Glazier, B.S., and Koto, A. (2002). A novel mutation (G217D) in the Presenilin 1 gene (PSEN1) in a Japanese family: presenile dementia and parkinsonism are associated with cotton wool plaques in the cortex and striatum. Acta Neuropathol. 104:155–170.

    Article  PubMed  CAS  Google Scholar 

  • Tatzelt, J., Maeda, N., Pekny, M., Yang, S.L., Betsholtz, C., Eliasson, C., Cayetano, J., Camerino, A.P., DeArmond, S.J., and Prusiner, S.B. (1996). Scrapie in mice deficient in apolipoprotein E or glial fibrillary acidic protein. Neurology 47:449–453.

    PubMed  CAS  Google Scholar 

  • Thal, D.R., Ghebremedhin, E., Rub, U., Yamaguchi, H., Del Tredici, K., and Braak, H. (2002). Two types of sporadic cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 61:282–293.

    PubMed  Google Scholar 

  • Thomas, T., Thomas, G., McLendon, C., Sutton, T., and Mullan, M. (1996). β-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380:168–171.

    Article  PubMed  CAS  Google Scholar 

  • Tokuda, T., Calero, M., Matsubara, E., Vidal, R., Kumar, A., Permanne, B., Zlokovic, B.V., Smith, J.D., LaDu, M.J., Rostagno, A., Frangione, B., and Ghiso, J. (2000). Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid β peptides. Biochem. J. 348:359–365.

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama, T., Corder, E.H., and Mori, H. (1999). Molecular pathogenesis of apolipoprotein E-mediated amyloidosis in late-onset Alzheimer’s disease. Cell. Mol. Life Sci. 56:268–279.

    Article  PubMed  CAS  Google Scholar 

  • Trigatti, B.L., Krieger, M., and Rigotti, A. (2003). Influence of the HDL receptor SR-BI on lipoprotein-metabolism and atherosclerosis. Arterioscler. Thromb.Vasc. Biol. 23:1732–1738.

    Article  PubMed  CAS  Google Scholar 

  • Tsuruta, J.K., Wong, K., Fritz, I.B., and Griswold, M.D. (1990). Structural-analysis of sulfated glycoprotein-2 from amino-acid-sequence—relationship to clusterin and serum protein-40,40. Biochem. J. 268:571–578.

    PubMed  CAS  Google Scholar 

  • Van Dorpe, J., Smeijers, L., Dewachter, I., Nuyens, D., Spittaels, K., Van Den Haute, C., Mercken, M., Moechars, D., Laenen, I., Kuiperi, C., Bruynseels, K., Tesseur, I., Loos, R., Vanderstichele, H., Checler, F., Sciot, R., and Van Leuven, F. (2000). Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am. J. Pathol. 157:1283–1298.

    PubMed  Google Scholar 

  • Van Everbroeck, B., Croes, E.A., Pals, P., Dermaut, B., Jansen, G., van Duijn, C.M., Cruts, M., Van Broeckhoven, C., Martin, J.J., and Cras, P. (2001). Influence of the prion protein and the apolipoprotein E genotype on the Creutzfeldt-Jakob disease phenotype. Neurosci. Lett. 313:69–72.

    Article  PubMed  Google Scholar 

  • Verbeek, M.M., Otte-Holler, I., Veerhuis, R., Ruiter, D.J., and De Waal, R.M.W. (1998). Distribution of A beta-associated proteins in cerebrovascular amyloid of Alzheimer’s disease. Acta Neuropathol. 96:628–636.

    Article  PubMed  CAS  Google Scholar 

  • Vidal, J., Verchere, C.B., Andrikopoulos, S., Wang, F., Hull, R.L., Cnop, M., Olin, K.L., LeBoeuf, R.C., O’Brien, K.D., Chait, A., and Kahn, S.E. (2003). The effect of apolipoprotein E deficiency on islet amyloid deposition in human islet amyloid polypeptide transgenic mice. Diabetologia 46:71–79.

    PubMed  CAS  Google Scholar 

  • Weisgraber, K.H. (1994). Apolipoprotein-e—structure-function-relationships. Adv. Protein Chem. 45:249–302.

    PubMed  CAS  Google Scholar 

  • Wengenack, T.M., Curran, G.L., and Poduslo, J.F. (2000). Targeting Alzheimer amyloid plaques in vivo. Nat. Biotechnol. 18:868–872.

    Article  PubMed  CAS  Google Scholar 

  • Westermark, P., Mucchiano, G., Marthin, T., Johnson, K.H., and Sletten, K. (1995). Apolipoprotein A1-derived amyloid in human aortic atherosclerotic plaques. Am. J. Pathol. 147:1186–1192.

    PubMed  CAS  Google Scholar 

  • Wirths, O., Multhaup, G., Czech, C., Blanchard, V., Moussaoui, S., Tremp, G., Pradier, L., Beyreuther, K., and Bayer, T.A. (2001). Intraneuronal A beta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci. Lett. 306:116–120.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, H.M., Sadowski, M., Jakubowska-Sadowska, K., Tarnawski, M., and Wegiel, J. (1998). Diffuse, lake-like amyloid-beta deposits in the parvopyramidal layer of the presubiculum in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57:674–683.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, T., and Frangione, B. (1992). Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. 135:235–238.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, T., Ghiso, J., and Frangione, B. (1991). Peptides homologous to the amyloid protein of Alzheimer’s disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation. Biochem. Biophys. Res. Commun. 179:1247–1254.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, T., Castañ, E.M., Ghiso, J., and Frangione, B. (1993a). Cerebrospinal fluid inhibits Alzheimer beta-amyloid fibril formation in vitro. Ann. Neurol. 34:631–633.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, T., Golabek, A.A., Matsubara, E., Ghiso, J., and Frangione, B. (1993b). Apolipoprotein E: binding to soluble Alzheimer’s beta-amyloid. Biochem. Biophys. Res. Commun. 192:359–365.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, T., Castaño, E.M., Golabek, A.A., Vogel, T., and Frangione, B. (1994a). Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am. J. Pathol. 145:1030–1035.

    PubMed  CAS  Google Scholar 

  • Wisniewski, T., Ghiso, J., and Frangione, B. (1994b). Alzheimer’s disease and soluble A?. Neurobiol. Aging 15:143–152.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, T., Golabek, A.A., Kida, E., Wisniewski, K.E., and Frangione, B. (1995a). Conformational mimicry in Alzheimer’s disease. Role of apolipoproteins in amyloidogenesis. Am. J. Pathol. 147:238–244.

    PubMed  CAS  Google Scholar 

  • Wisniewski, T., Lalowski, M., Golabek, A.A., Vogel, T., and Frangione, B. (1995b). Is Alzheimer’s disease an apolipoprotein E amyloidosis? Lancet 345:956–958.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, H., Sugihara, S., Ogawa, A., Oshima, N., and Ihara, Y. (2001). Alzheimer beta amyloid deposition enhanced by ApoE epsilon 4 gene precedes neurofibrillary pathology in the frontal association cortex of nondemented senior subjects. J. Neuropathol. Exp. Neurol. 60:731–739.

    PubMed  CAS  Google Scholar 

  • Yan, S.D., Chen, X., Fu, J., Chen, M., Zhu, H.J., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D., and Schmidt, A.M. (1996). RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691.

    Article  PubMed  CAS  Google Scholar 

  • Yan, S.D., Fu, J., Soto, C., Chen, X., Zhu, H.J., Al-Mohanna, F., Collison, K., Zhu, A.P., Stern, E., Saido, T., Tohyama, M., Ogawa, S., Roher, A., and Stern, D. (1997). An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 389:689–695.

    Article  PubMed  CAS  Google Scholar 

  • Zeidler, M., Stewart, G.E., Barraclough, C.R., Bateman, D.E., Bates, D., Burn, D.J., Colchester, A.C., Durward, W., Fletcher, N.A., Hawkins, S.A., Mackenzie, J.M., and Will, R.G. (1997). New variant Creutzfeldt-Jakob disease: neurological features and diagnostic tests. Lancet 350:903–907.

    Article  PubMed  CAS  Google Scholar 

  • Zerr, I., Helmhold, M., Poser, S., Armstrong, V.W., and Weber, T. (1996). Apolipoprotein E phenotype frequency and cerebrospinal fluid concentration are not associated with Creutzfeldt-Jakob disease. Arch. Neurol. 53:1233–1238.

    PubMed  CAS  Google Scholar 

  • Zlokovic, B.V. (1996). Cerebrovascular transport of Alzheimer’s amyloid β and apolipoproteins J and E: possible antiamyloidogenic role of the blood-brain barrier. Life Sci. 59:1483–1497.

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic, B.V., Ghiso, J., Mackic, J.B., McComb, J.G., Weiss, M.H., and Frangione, B. (1993). Blood-brain barrier transport of circulating Alzheimer’s amyloid beta. Biochem. Biophys. Res. Commun. 197:1034–1040.

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic, B.V., Martel, C.L., Mackic, J.B., Matsubara, E., Wisniewski, T., McComb, J.G., Frangione, B., and Ghiso, J. (1994). Brain uptake of circulating apolipoproteins J and E complexed to Alzheimer’s amyloid beta. Biochem. Biophys. Res. Commun. 205:1431–1437.

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic, B.V., Martel, C.L., Matsubara, E., McComb, J.G., Zheng, G., McCluskey, R.T., Frangione, B., and Ghiso, J. (1996). Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid β at the blood-brain and blood-cerebrospinal fluid barriers. Proc. Natl. Acad. Sci. USA 93:4229–4234.

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic, B.V., Yamada, S., Holtzman, D., Ghiso, J., and Frangione, B. (2000). Clearance of amyloid beta-peptide from brain: transport or metabolism? Nat. Med. 6:718.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Sadowski, M., Wisniewski, T. (2006). Apolipoproteins in Different Amyloidoses. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25919-8_6

Download citation

Publish with us

Policies and ethics