Skip to main content

Abstract

This chapter reviews the histological structure of the normal central nervous system and the basic pathology of inflammation and demyelination of this tissue. An outline of the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is given and pathology of multiple sclerosis is reviewed. The limitations of EAE as a model for multiple sclerosis are discussed. The approach to histopathological assessment of the lesions of EAE is outlined, including collection and processing of appropriate samples and a review of grading systems that have been used to quantify the histopathological changes. The specific histopathological features of EAE are described with reference to selected model systems including the SJL/J, C57B1/6 and NOD mouse, the Lewis rat, rhesus monkey and marmoset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloisi F, Serafini B and Adorini L, 2000. Glia-T cell dialogue. Journal of Neuroimmunology 107: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Anthony DC, Hughes P and Perry VH, 2000. The evidence for primary axonal loss in multiple sclerosis. Revista de Neurologia 30: 1203–1208.

    PubMed  CAS  Google Scholar 

  • Baker D, O’Neill JK, Gschmeissner SE, Wilcox CE, Butter C and Turk JL, 1990. Induction of chronic relapsing experimental allergic encephalomyelitis in Biozzi mice. Journal of Neuroimmunology 28: 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Baumann N and Pham-Dinh D, 2001. Biology of oligodendrocytes and myelin in the mammalian central nervous system. Physiological Reviews 81: 671–927.

    Google Scholar 

  • Bettelli E, Das MP, Howard ED, Weiner HL, Sobel RA and Kuchroo VJ, 1998. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10-and IL-4-deficient and transgenic mice. Journal of Immunology 161: 3299–3306.

    CAS  Google Scholar 

  • Blakemore WF, Summers BA and Sedgwick J, 1989. Lymphocyte-myelin sheath interactions in acute experimental allergic encephalomyelitis. Journal of Neuroimmunology 23: 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Boztug K, Carson MJ, Pham-Mitchell N, Asensio VC, DeMartino J and Campbell IL, 2002. Leukocyte infiltration, but not neurodegeneration, in the CNS of transgenic mice with astrocyte production of the CXC chemokine ligand 10. Journal of Immunology 169: 1505–1515.

    CAS  Google Scholar 

  • Brown A, Dale MD, McFarlin MD and Raine CS, 1982. Chronic neuropathology of relapsing experimental allergic encephalomyelitis in the mouse. Laboratory Investigation 46: 171–185.

    PubMed  CAS  Google Scholar 

  • Chan A, Magnus T and Gold R, 2001. Phagocytosis of apoptotic inflammatory cells by microglia and modulation by different cytokines. Mechanism for removal of apoptotic cells in the inflamed nervous system. Glia 33: 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Couraud PO, 1998. Infiltration of inflammatory cells through brain endothelium. Pathologie Biologie 46: 176–180.

    PubMed  CAS  Google Scholar 

  • Dong YS and Benveniste EN, 2001. Immune function of astrocytes. Glia 36: 180–190.

    Article  PubMed  CAS  Google Scholar 

  • Furlan R, Martino G, Galbiati F, Poliani PL, Smiroldo S, Bergami A, Desina G, Comi G, Flavell R, Su MS and Adorini L, 1999. Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. Journal of Immunology 163: 2403–2409.

    CAS  Google Scholar 

  • ’t Hart BA et al., 1998. Histological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis. American Journal of Pathology 153: 649–663.

    PubMed  CAS  Google Scholar 

  • ’t Hart BA, van Meurs M, Brok HPM, Massacesi L, Bauer J, Boon L, Bontrop RE and Laman JD, 2000. A new primate model for multiple sclerosis in the common marmoset. Immunology Today 21: 290–297.

    Article  PubMed  Google Scholar 

  • Hickey WF, 1999. The pathology of multiple sclerosis: a historical perspective. Journal of Neuroimmunology 98:37–44.

    Article  PubMed  CAS  Google Scholar 

  • Kieseier BC, Storch MK, Archelos JJ, Martino G and Hartung HP, 1999. Effector pathways in immune mediated central nervous system demyelination. Current Opinion in Neurology 12: 323–336.

    Article  PubMed  CAS  Google Scholar 

  • Langer-Gould A, Garren H, Slansky A, Ruiz PJ and Steinman L, 2002. Late pregnancy suppresses relapses in experimental autoimmune encephalomyelitis: evidence for a suppressive pregnancy-related serum factor. Journal of Immunology 169: 1084–1091.

    CAS  Google Scholar 

  • Linington C, Bradl M, Lassmann H, Brunner C and Vass K, 1988. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. American Journal of Pathology 130: 443–454.

    PubMed  CAS  Google Scholar 

  • Luchinetti C, Bruck W, Parisi J et al., 2000. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Annals of Neurology 47: 707–717.

    Article  Google Scholar 

  • Lyman WD, Sonett JR, Brosnan CF, Elkin R and Bornstein MB, 1989. Δ9-Tetrahydrocannabinol: a novel treatment for experimental autoimmune encephalomyelitis. Journal of Neuroimmunology 23: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Lyons JA, Ramsbottom MJ and Cross AH, 2002. Critical role of antigen-specific antibody in experimental autoimmune encephalomyelitis induced by recombinant myelin oligodendrocyte glycoprotein. European Journal of Immunology 32: 1905–1913.

    Article  PubMed  CAS  Google Scholar 

  • Massey EJ, Sundstedt A, Day MJ, Corfield G, Anderton S and Wraith DC, 2002. Intranasal peptide-induced peripheral tolerance: the role of IL-10 in regulatory T cell function within the context of experimental autoimmune encephalomyelitis. Veterinary Immunology and Immunopathology 87: 357–372.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto Y and Fujiwara M, 1988. Adoptively transferred experimental allergic encephalomyelitis in chimeric rats: identification of transferred cells in the lesions of the central nervous system. Immunology 65: 23–29.

    PubMed  CAS  Google Scholar 

  • Minagawa H, Takenaka A, Itoyama Y and Mori R, 1987. Experimental allergic encephalomyelitis in the Lewis rat. A model of predictable relapse by cyclophosphamide. Journal of the Neurological Sciences 78: 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Nait-Oumesmar B, Lachapelle F, Decker L and Baron-Van Evercooren A, 2000. Do central nervous system axons remyelinate? Pathologie Biologie 48: 70–79.

    PubMed  CAS  Google Scholar 

  • O’Brien NC, Charlton B, Cowden WB and Willenborg DO, 1999. Nitric oxide plays a critical role in the recovery of Lewis rats from experimental autoimmune encephalomyelitis and the maintenance of resistance to reinduction. Journal of Immunology 163: 6841–6847.

    CAS  Google Scholar 

  • Ouallet JC, Baumann N, Marie Y and Villarroya H, 1999. Fas system up-regulation in experimental autoimmune encephalomyelitis. Journal of the Neurological Sciences 170: 96–104.

    Article  PubMed  CAS  Google Scholar 

  • Pivneva TA, Kolotoushkina EV and Mel’nik NA, 1999. Mechanisms of the demyelination process and its modelling. Neurophysiology 31: 403–412.

    Article  Google Scholar 

  • Polman CH, Matthaei I, de Groot CJA, Koetsier JC, Sminia T and Dijkstra CD, 1988. Low-dose cyclosporin A induces relapsing remitting experimental allergic encephalomyelitis in the Lewis rat. Journal of Neuroimmunology 17: 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Racke MK, Burnett D, Pak S-H, Albert PS, Cannella B, Raine CS, McFarlin DE and Scott DE, 1995. Retinoid treatment of experimental allergic encephalomyelitis. Journal of Immunology 154: 450–458.

    CAS  Google Scholar 

  • Raine CS, Cannella B, Hauser SL and Genain CP, 1999. Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: A case for antigen-specific antibody mediation. Annals of Neurology 46: 144–160.

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff RM, 1999. Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. Journal of Neuroimmunology 98: 57–68.

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff RM, Howe CL and Rodriguez M, 2002. Growth factor treatment of demyelinating disease: at last, a leap into the light. Trends in Immunology 23: 512–516.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA, 2002. Matrix metalloproteinases and neuroinflammation in multiple sclerosis. Neuroscientist 8: 586–587.

    Article  PubMed  CAS  Google Scholar 

  • Schluesener HJ, Sobel RA and Weiner HL, 1988. Demyelinating experimental allergic encephalomyelitis (EAE) in the rat: treatment with a monoclonal antibody against activated T cells. Journal of Neuroimmunology 18: 341–351.

    Article  PubMed  CAS  Google Scholar 

  • Sedgwick J, Brostoff S and Mason D, 1987. Experimental allergic encephalomyelitis in the absence of a classical delayed type hypersensitivity reaction. Journal of Experimental Medicine 165: 1058–1075.

    Article  PubMed  CAS  Google Scholar 

  • Sedgwick JD, 1988. Long-term depletion of CD8+ T cells in vivo in the rat: no observed role for CD8+ (cytotoxic/suppressor) cells in the immunoregulation of experimental allergic encephalomyelitis. European Journal of Immunology 18: 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Smith ME, 1999. Phagocytosis of myelin in demyelinative disease: A review. Neurochemical Research 24: 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Smith ME, 2001. Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis in EAE. Microscopy Research and Technique 54: 87–94.

    Article  Google Scholar 

  • Spahn TW, Issazadah S, Salvin AJ and Weiner HL, 1999. Decreased severity of myelin oligodendrocyte glycoprotein peptide 33–55-induced experimental autoimmune encephalomyelitis in mice with a disrupted TCR δ chain gene. European Journal of Immunology 29: 4060–4071.

    Article  PubMed  CAS  Google Scholar 

  • Sternberger NH, Sternberger LA, Kies MW and Shear CR, 1989. Cell surface endothelial proteins altered in experimental allergic encephalomyelitis. Journal of Neuroimmunology 21:241–248.

    Article  PubMed  CAS  Google Scholar 

  • Stoll G and Jander S, 1999. The role of microglia and macrophages in the pathophysiology of the CNS. Progress in Neurobiology 58: 233–247.

    Article  PubMed  CAS  Google Scholar 

  • Suen WE, Bergman CM, Hjelmstrom P and Ruddle NH, 1997. A critical role for lymphotoxin in experimental allergic encephalomyelitis. Journal of Experimental Medicine 186: 1233–1240.

    Article  PubMed  CAS  Google Scholar 

  • Tuohy VK, Yu M, Yin L, Kawczak JA and Kinkel RP, 1999. Spontaneous regression of primary autoreactivity during chronic progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Journal of Experimental Medicine 189: 1033–1042.

    Article  PubMed  CAS  Google Scholar 

  • Ufret-Vincenty RL, Quigley L, Tresser N, Pak SH, Gado A, Hausmann S, Wucherpfenning KW and Brocke S, 1998. In vivo survival of viral antigen-specific T cells that induce experimental autoimmune encephalomyelitis. Journal of Experimental Medicine 188: 1725–1738.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg AD, Whitham R, Swain SL, Morrison WJ, Wyrick G, Hoy C, Vandenbark AA and Offner H, 1992. Transforming growth factor ß enhances the in vivo effector function and memory phenotype of antigen-specific T helper cells in experimental autoimmune encephalomyelitis. Journal of Immunology 148: 2109–2117.

    CAS  Google Scholar 

  • Weinberg AD, Wallin JJ, Jones RE, Sullivan TJ, Bourdette DN, Vandenbark AA and Offner H, 1994. Target organ-specific up-regulation of the MRC Ox-40 marker and selective production of Th1 lymphokine mRNA by encephalitogenic T helper cells isolated from the spinal cord of rats with experimental autoimmune encephalomyelitis. Journal of Immunology 152: 4712–4721.

    CAS  Google Scholar 

  • Weiner HL and Selkoe DJ, 2002. Inflammation and therapeutic vaccination in CNS diseases. Nature 420: 879–884.

    Article  PubMed  CAS  Google Scholar 

  • Winer S, Astsaturov I, Cheung RK, Gunaratnam L, Kubiak V, Cortez MA, Moscarello M, O’Connor PW, McKerlie C, Becker DJ and Dosch H-M, 2001. Type I diabetes and multiple sclerosis patients target islet plus central nervous system autoantigens; nonimmunized nonobese diabetic mice can develop autoimmune encephalitis. Journal of Immunology 166: 2831–2841.

    CAS  Google Scholar 

  • Zipp F, 2000. Apoptosis in multiple sclerosis. Cell and Tissue Research 301: 163–171.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Day, M.J. (2005). Histopathology of EAE. In: Lavi, E., Constantinescu, C.S. (eds) Experimental Models of Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/0-387-25518-4_3

Download citation

Publish with us

Policies and ethics