Skip to main content

Hydrogen Peroxide as Intracellular Messenger: Identification of Protein Tyrosine Phosphatases and Pten as H2O2 Target

  • Chapter
Signal Transduction by Reactive Oxygen and Nitrogen Species: Pathways and Chemical Principles

Conclusion

The proposed role of H2O2 in growth factor signaling is depicted in Fig. 5. In the model, H2O2 induces reversible inactivation of PTPs and PTEN through oxidation of their essential Cys residues. This model suggests that the receptor-mediated activation of RTK and PI 3-kinase may not be sufficient for the accumulation of tyrosine phosphorylated proteins and 3′-phosphorylated PIs because of the opposing activity of PTPs and PTEN, respectively. The concomitant inactivation of PTPs and PTEN by H2O2 produced in response to receptor stimulation might also be necessary for these effects. This model is consistent with the previous observations that H2O2 generation and accumulation are necessary for downstream actions of PDGF and EGF that are mediated by RTK and PI 3-kinase. In the absence of the proposed function of H2O2 the activation of RTK and PI 3-kinase would result in futile cycles of phosphorylation / dephosphorylation of proteins and phosphoinositide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fridovich, I. (1997). Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  CAS  PubMed  Google Scholar 

  2. Stadtman, E. R. (1992). Protein oxidation and aging. Science 257:1220–1224

    CAS  PubMed  Google Scholar 

  3. Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875.

    Article  CAS  PubMed  Google Scholar 

  4. Saugstad, O. D. (1996). Role of xanthine oxidase and its inhibitor in hypoxia: reoxygenation injury. Pediatrics 98:103–107.

    CAS  PubMed  Google Scholar 

  5. Bernhardt, R. (1996). Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev Physiol Biochem Pharmacol 127:137–221

    CAS  PubMed  Google Scholar 

  6. Krieger-Brauer, H. I. and H. Kather. (1995). The stimulus-sensitive H2O2-generating system present in human fat-cell plasma membranes is multireceptor-linked and under antagonistic control by hormones and cytokines. Biochem J 307:543–548

    CAS  PubMed  Google Scholar 

  7. Ohba, M., M. Shibanuma, T. Kuroki and K.. Nose. (1994). Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 126:1079–1088

    Article  CAS  PubMed  Google Scholar 

  8. Thannickal, V. J., K. D. Aldweib and B. L. Fanburg. (1998). Tyrosine phosphorylation regulates H2O2 production in lung fibroblasts stimulated by transforming growth factor beta 1. J Biol Chem 273:23611–23615

    Article  CAS  PubMed  Google Scholar 

  9. Tan, S., Y. Sagara, Y. Liu, P. Maher and D. Schubert. (1998). The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141:1423–1432

    Article  CAS  PubMed  Google Scholar 

  10. Sundaresan, M., Z. X. Yu, V. J. Ferrans, K. Irani and T. Finkel. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299

    CAS  PubMed  Google Scholar 

  11. Bae, Y. S., S. W. Kang, M. S. Seo, I. C. Baines, E. Tekle, P. B. Chock and S. G. Rhee. (1997). Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  CAS  PubMed  Google Scholar 

  12. Robertson, F. M., A. J. Beavis, T. M. Oberyszyn, S. M. O’Connell, A. Dokidos, D. L. Laskin, J. D. Laskin and J. J. Reiners Jr. (1990). Production of hydrogen peroxide by murine epidermal keratinocytes following treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 50:6062–6067

    CAS  PubMed  Google Scholar 

  13. Rhee, S. G., Y. S. Bae, S. R. Lee and J. Kwon. (2000). Hydrogen peroxide: A key messenger that modulates protein phosphorylation through cysteine oxidation. Science’s stke www.stke.org/cgi/contentfull/OC_sigtrans;2000/53/pe1

    Google Scholar 

  14. Rhee, S. G. (1999). Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31:53–59

    CAS  PubMed  Google Scholar 

  15. Finkel, T. (1998). Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki, Y. J. and G. D. Ford. (1999). Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol 31:345–353.

    Article  CAS  PubMed  Google Scholar 

  17. Thannickal, V. J and B. L. Fanburg. (2000). Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279: L1005–1028.

    Google Scholar 

  18. Griendling, K. K. and M. Ushio-Fukai. (2000). Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 91:21–27.

    Article  CAS  PubMed  Google Scholar 

  19. Patel, R. P., D. Moellering, J. Murphy-Ullrich, H. Jo, J. S. Beckman and V. M. Darley-Usmar. (2000). Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic Biol Med 28:1780–1794.

    CAS  PubMed  Google Scholar 

  20. Forman, H. J. and M. Torres. (2001). Signaling by the respiratory burst in macrophages. IUBMB Life 51:365–371.

    CAS  PubMed  Google Scholar 

  21. Ushio-Fukai, M., R. W. Alexander, M. Akers, Q. Yin, Y. Fujio, K. Walsh and K. K. Griendling. (1999). Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274:22699–22704

    Article  CAS  PubMed  Google Scholar 

  22. Babior, B. M. (1999). NADPH oxidase: an update. Blood 93:1464–1476.

    CAS  PubMed  Google Scholar 

  23. Lambeth, J. D. (2002). Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol 9:11–17.

    Article  PubMed  Google Scholar 

  24. Luo, X. P., M. Yazdanpanah, N. Bhooi and D. Lehotay. (1995). Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Anal Biochem 228:294–298

    Article  CAS  PubMed  Google Scholar 

  25. Levine, R. L., J. A. Williams, E. R. Stadtman and E. Shacter. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    CAS  PubMed  Google Scholar 

  26. Yoritaka, A., N. Hattori, K. Uchida, M. Tanaka, E. R. Stadtman and Y. Mizuno. (1996). Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A 93:2696–2701

    Article  CAS  PubMed  Google Scholar 

  27. Teixeira, A. J., M. R. Ferreira, W. J. van Dijk, G. van de Werken and A. P. de Jong. (1995). Analysis of 8-hydroxy-2′-deoxyguanosine in rat urine and liver DNA by stable isotopedilution gas chromatography/mass spectrometry. Anal Biochem 226:307–319

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J. R., H. W. Yoon, K. S. Kwon, S. R. Lee and S. G. Rhee. (2000). Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH [In Process Citation]. Anal Biochem 283:214–221

    Article  CAS  PubMed  Google Scholar 

  29. Besse, D., F. Siedler, T. Diercks, H. Kessler and L. Moroder. (1997). The redox potential of Selenocysteine in unconstrained cyclic peptides. Angew. Chem. Int. Ed. Engl. 36:883–885

    Article  CAS  Google Scholar 

  30. Kemmink, J., N. J. Darby, K. Dijkstra, M. Nilges and T. E. Creighton. (1996). Structure determination of the N-terminal thioredoxin-like domain of protein disulfide isomerase using multidimensional heteronuclear 13C/15N NMR spectroscopy. Biochemistry 35:7684–7691

    Article  CAS  PubMed  Google Scholar 

  31. Stone, R. L. and J. E. Dixon. (1994). Protein-tyrosine phosphatases. J Biol Chem 269:31323–31326

    CAS  PubMed  Google Scholar 

  32. Furter, R., E. M. Furter-Graves and T. Wallimann. (1993). Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry 32:7022–7029

    Article  CAS  PubMed  Google Scholar 

  33. Mercer, W. D., S. I. Winn and H. C. Watson. (1976). Twinning in crystals of human skeletal muscle D-glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol 104:277–283

    Article  CAS  PubMed  Google Scholar 

  34. Choi, H. J., S. W. Kang, C. H. Yang, S. G. Rhee and S. E. Ryu. (1998). Crystallization and preliminary X-ray studies of hORF6, a novel human antioxidant enzyme. Acta Crystallogr D Biol Crystallogr 54:436–437

    Article  PubMed  Google Scholar 

  35. Lohse, D. L., J. M. Denu, N. Santoro and J. E. Dixon. (1997). Roles of aspartic acid-181 and serine-222 in intermediate formation and hydrolysis of the mammalian protein-tyrosine-phosphatase PTP1. Biochemistry 36:4568–4575

    Article  CAS  PubMed  Google Scholar 

  36. Lee, S. R., K. S. Kwon, S. R. Kim and S. G. Rhee. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273:15366–15372

    CAS  PubMed  Google Scholar 

  37. Barford, D., A. J. Flint and N. K. Tonks. (1994). Crystal structure of human protein tyrosine phosphatase 1B. Science 263:1397–1404.

    CAS  PubMed  Google Scholar 

  38. Barrett, W. C., J. P. DeGnore, Y. F. Keng, Z. Y. Zhang, M. B. Yim and P. B. Chock. (1999). Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem 274:34543–34546.

    Article  CAS  PubMed  Google Scholar 

  39. May, J. M. and C. de Haen. (1979). Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. J Biol Chem 254:2214–2220

    CAS  PubMed  Google Scholar 

  40. Mahadev, K., A. Zilbering, L. Zhu and B. J. Goldstein. (2001). Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem 276:21938–21942.

    CAS  PubMed  Google Scholar 

  41. Meng, T. C., T. Fukada and N. K. Tonks. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399.

    Article  CAS  PubMed  Google Scholar 

  42. Hof, P., S. Pluskey, S. Dhe-Paganon, M. J. Eck and S. E. Shoelson. (1998). Crystal structure of the tyrosine phosphatase SHP-2. Cell 92:441–450.

    Article  CAS  PubMed  Google Scholar 

  43. Maehama, T. and J. E. Dixon. (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378.

    Article  CAS  PubMed  Google Scholar 

  44. Maehama, T., G. E. Taylor and Dixon. (2001). PTEN and Myotubularin: Novel Phosphoinositide Phosphatases. Annu. Rev. Biochem. 70:247–279

    Article  CAS  PubMed  Google Scholar 

  45. Lee, J. O., H. Yang, M. M. Georgescu, A. Di Cristofano, T. Maehama, Y. Shi, J. E. Dixon, P. Pandolfi and N. P. Pavletich. (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–334.

    CAS  PubMed  Google Scholar 

  46. Lee, S. R., K. S. Yang, J. Kwon, C. Lee, W. Jeong and S. G. Rhee. (2002). Regulation of PTEN by superoxide and H2O2 through the reversible formation of a disulfide between Cys124 and Cys71. J. Biol. Chem. 277:20336–20342

    CAS  PubMed  Google Scholar 

  47. Bae, Y. S., J. Y. Sung, O. S. Kim, Y. J. Kim, K. C. Hur, A. Kazlauskas and S. G. Rhee. (2000). Platelet-derived growth factor-induced H2O production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem 275:10527–10531

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rhee, S.G., Lee, SR., Yang, KS., Kwon, J., Kang, S.W. (2003). Hydrogen Peroxide as Intracellular Messenger: Identification of Protein Tyrosine Phosphatases and Pten as H2O2 Target. In: Forman, H.J., Fukuto, J., Torres, M. (eds) Signal Transduction by Reactive Oxygen and Nitrogen Species: Pathways and Chemical Principles. Springer, Dordrecht. https://doi.org/10.1007/0-306-48412-9_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-48412-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1117-7

  • Online ISBN: 978-0-306-48412-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics