Skip to main content

Conclusions

Thus, a spectrum of signalling pathways both regulate mitochondria-derived RONS in the cytosol and are downstream targets of RONS. This creates the potential for a positive feedback amplification loop, significantly impacting the rate of apoptosis. In addition, the observations that several of these pathways may promote or suppress apoptosis and are regulated by RONS further suggests that the ultimate survival of a cell is dependent on the redox state of the intracellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Menzel, D. B. 1970. Toxicity of ozone, oxygen, and radiation. Annu Rev Pharmacol 10:379–94.

    Article  CAS  PubMed  Google Scholar 

  2. Gerschman, R. 1964. Biological Effects of Oxygen, in Oxygen in the Animal Organism (eds. Dickens, F. & Niel, E.), pp 475–494 Pergamon Press, London.

    Google Scholar 

  3. Lander, H. M. 1997. An essential role for free radicals and derived species in signal transduction. Faseb J 11:118–24.

    CAS  PubMed  Google Scholar 

  4. Finkel, T. 1998. Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–53.

    Article  CAS  PubMed  Google Scholar 

  5. Nose, K. 2000. Role of reactive oxygen species in the regulation of physiological functions. Biol Pharm Bull 23:897–903.

    CAS  PubMed  Google Scholar 

  6. Chance, B., D. Jamieson and H. Coles. 1965. Energy-linked pyridine nucleotide reduction: inhibitory effects of hyperbaric oxygen in vitro and in vivo. Nature 206:257–63.

    CAS  PubMed  Google Scholar 

  7. Loschen, G., L. Flohe and B. Chance. 1971. Respiratory Chain Linked H2O2 Production in Pigeon Heart Mitochondria. FEBS Lett 18:261–264.

    Article  CAS  PubMed  Google Scholar 

  8. Boveris, A., N. Oshino and B. Chance. 1972. The Cellular Production of Hydorgen Peroxide. Biochem J 128:617–630.

    CAS  PubMed  Google Scholar 

  9. Boveris, A. and B. Chance. 1973. The Mitochondrial Generation of Hydrogen Peroxide: General Properties and Effect of Hyperbaric Oxygen. Biochem J. 134:707–716.

    CAS  PubMed  Google Scholar 

  10. Loschen, G., A. Azzim, C. Richter and L. Flohe. 1973. Mitochondial H2O2 Formation: Relationship with Energy Conservation. FEBS Lett 33:84–88.

    Article  CAS  PubMed  Google Scholar 

  11. Loschen, G., A. Azzim and C. Richter. 1974. Superoxide Radicals as Precursors of Mitochondrial Hydrogen Peroxide. FEBS Lett 42:68–72.

    Article  CAS  PubMed  Google Scholar 

  12. Turrens, J.F. and A. Boveris. 1980. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–7.

    CAS  PubMed  Google Scholar 

  13. Giulivi, C., A. Boveris and E. Cadenas. 1999. Oxygen Radicals in Mitochondria: Critical Evaluation of the Methodology Availabe for Estimating Steady-State Concentrations of Oxygen Radidals. in Reactive Oxygen Species in Biological Systems: Selected Topics (eds. Gilbert, D.L. & Colton, C.A.) pp. 77–102 Plenum Press, New York.

    Google Scholar 

  14. Oshino, N., D. Jamieson, T. Sugano and B. Chance. 1975. Optical measurement of the catalase-hydrogen peroxide intermediate (Compound I) in the liver of anaesthetized rats and its implication to hydrogen peroxide production in situ. Biochem J 146:67–77.

    CAS  PubMed  Google Scholar 

  15. Chance, B., A. Boveris, N. Oshino and G. Loschen. 1971. The Nature of the Catalase Intermediate in its Biological Function, in Oxidases and Related Redox Systems, Vol. I (eds. King, T.E., Mason, H.S. & Morrison, M.) pp. 350–353 University Park Press, Baltimore.

    Google Scholar 

  16. Boveris, A., E. Cadenas and A. O. Stoppani. 1976. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–44.

    CAS  PubMed  Google Scholar 

  17. Beyer, R. E., W. M. Noble and T. J. Hirschfeld. 1962. Alterations of Rat-Tissue Coenxymes Q (Ubiquinone) Levels by Various Treatments. Biochim Biophys Acta 57:376–379.

    Article  CAS  Google Scholar 

  18. Bredt, D. S. and S. H. Snyder. 1990. Isolation of nitric oxide synthetase, a calmodulinrequiring enzyme. Proc Natl Acad Sci U S A 87:682–5.

    CAS  PubMed  Google Scholar 

  19. Mayer, B., M. John and E. Bohme. Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin. FEBS Lett 277:215–9.

    Google Scholar 

  20. Schmidt, H. H. et al. 1991. Purification of a soluble isoform of guanylyl cyclaseactivating-factor synthase. Proc Natl Acad Sci U S A 88:365–9.

    CAS  PubMed  Google Scholar 

  21. Stuehr, D. J. and M. A. Marletta. 1987. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol 139:518–25.

    CAS  PubMed  Google Scholar 

  22. Forstermann, U., H. H. Schmidt, K. L. Kohlhaas and F. Murad. 1992. Induced RAW 264.7 macrophages express soluble and particulate nitric oxide synthase: inhibition by transforming growth factor-beta. Eur J Pharmacol 225:161–5.

    CAS  PubMed  Google Scholar 

  23. Feldman, P. L., O. W. Griffith and D. J. Stuehr. 1993. The surprising life of nitric oxide. Chem. Eng. News 20:26–38.

    Google Scholar 

  24. Gally, J. A., P. R. Montague, G. N. Reeke, Jr. and G. M. Edelman. 1990. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci U S A 87:3547–51.

    CAS  PubMed  Google Scholar 

  25. Moncada, S., R. M. Palmer and E. A. Higgs. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–42.

    CAS  PubMed  Google Scholar 

  26. Wise, D. L. and G. Houghton. 1968. Diffusion coefficients of neon, krypton, xenon, carbon monoxide and nitric oxide in water at 10—60 degrees C. Chem. Eng. Sci. 23:1211–1216.

    CAS  Google Scholar 

  27. Furchgott, R. F. and P. M. Vanhoutte. 1989. Endothelium-derived relaxing and contracting factors. Faseb J 3:2007–18.

    CAS  PubMed  Google Scholar 

  28. Craven, P. A. and F. R. DeRubertis. 1978. Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 253:8433–43.

    CAS  PubMed  Google Scholar 

  29. Ignarro, L. J., J. B. Adams, P. M. Horwitz and K. S. Wood. 1986. Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. J Biol Chem 261:4997–5002.

    CAS  PubMed  Google Scholar 

  30. Garthwaite, J., S. L. Charles and R. Chess-Williams. 1988. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–8.

    Article  CAS  PubMed  Google Scholar 

  31. Shibuki, K. and D. Okada. 1991. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349:326–8.

    Article  CAS  PubMed  Google Scholar 

  32. Giulivi, C., J. J. Poderoso and A. Boveris. 1998. Production of nitric oxide by mitochondria. J Biol Chem 273:11038–43.

    Article  CAS  PubMed  Google Scholar 

  33. Giulivi, C. 1998. Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism. Biochem J 332 (Pt 3):673–9.

    CAS  PubMed  Google Scholar 

  34. Giulivi, C., T. M. Sarkela, J. Berthiaume and S. Elfering. 1999. Modulation of mitochondrial respiration by endogenous nitric oxide. FASEb J 13:A1554.

    Google Scholar 

  35. Tatoyan, A. and C. Giulivi. 1998. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem 273:11044–8.

    Article  CAS  PubMed  Google Scholar 

  36. Elfering, S. L., T. M. Sarkela and C. Giulivi. 2002. Biochemistry of mitochondrial nitric oxide synthase. J Biol Chem.

    Google Scholar 

  37. Sarkela, T. M., J. Berthiaume, S. Elfering, A. A. Gybina and C. Giulivi. 2001. The modulation of oxygen radical production by nitric oxide in mitochondria. J Biol Chem 276:6945–9.

    Article  CAS  PubMed  Google Scholar 

  38. Bates, T. E., A. Loesch, G. Burnstock and J. B. Clark. 1995. Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem Biophys Res Commun 213:896–900.

    Article  CAS  PubMed  Google Scholar 

  39. Kobzik, L., B. Stringer, J. L. Balligand, M. B. Reid and J. S. Stamler. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem Biophys Res Commun 211:375–81.

    Google Scholar 

  40. Ghafourifar, P. and C. Richter. 1997. Nitric oxide synthase activity in mitochondria. FEES Lett 418:291–6.

    Article  CAS  Google Scholar 

  41. Ghafourifar, P., U. Schenk, S. D. Klein and C. Richter. 1999. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c releasefrom isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem 274:31185–8.

    CAS  PubMed  Google Scholar 

  42. Sugano, T., N. Oshino and B. Chance. 1974. Mitochondrial functions under hypoxic conditions. The steady states of cytochrome c reduction and of energy metabolism. Biochim Biophys Acta 347:340–58.

    CAS  PubMed  Google Scholar 

  43. Dormann, S. et al. 1999. Intercellular induction of apoptosis through modulation of endogenous survival factor concentration: a review. Anticancer Res 19:87–103.

    CAS  PubMed  Google Scholar 

  44. Carmody, R. J. and T. G. Cotter. 2001. Signalling apoptosis: a radical approach. Redox Rep 6:77–90.

    Article  CAS  PubMed  Google Scholar 

  45. Leist, M. and M. Jaattela. 2001. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–98.

    Article  CAS  PubMed  Google Scholar 

  46. Ranger, A. M., B. A. Malynn and S. J. Korsmeyer. 2001. Mouse models of cell death. Nat Genet 28:113–8.

    Article  CAS  PubMed  Google Scholar 

  47. Quaglino, D. and I. P. Ronchetti. 2001. Cell death in the rat thymus: A minireview. Apoptosis 6:389–401.

    Article  CAS  PubMed  Google Scholar 

  48. Zha, J., H. Harada, E. Yang, J. Jockel and S. J. Korsmeyer. 1996. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) [see comments]. Cell 87:619–28.

    Article  CAS  PubMed  Google Scholar 

  49. Yang, E. et al. 1995. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–91.

    CAS  PubMed  Google Scholar 

  50. Roberts, M. L., K. Virdee, C. P. Sampson, I. Gordon and A. M. Tolkovsky. 2000. The combination of bcl-2 expression and NGF-deprivation facilitates the selective destruction of BAD protein in living sympathetic neurons. Mol Cell Neurosci 16:97–110.

    CAS  PubMed  Google Scholar 

  51. Scheid, M. P., K. M. Schubert and V. Duronio. 1999 Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J Biol Chem 274:31108–13.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, X. M., Y. Liu, G. Payne, R. J. Lutz and T. Chittenden. 2000. Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Serl 55. J Biol Chem 275:25046–51.

    CAS  PubMed  Google Scholar 

  53. Cross, T. G. et al. 2000. Serine/threonine protein kinases and apoptosis. Exp Cell Res 256:34–41.

    Article  CAS  PubMed  Google Scholar 

  54. Tobiume, K. et al. 2001. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222–8.

    Article  CAS  PubMed  Google Scholar 

  55. Davis, R. J. 1999. Signal transduction by the c-Jun N-terminal kinase. Biochem Soc Symp 64:1–12.

    CAS  PubMed  Google Scholar 

  56. Kolch, W. 2000. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351(Pt 2):289–305.

    CAS  PubMed  Google Scholar 

  57. Mitsui, H. et al. 2001. The MEK1-ERK map kinase pathway and the PI 3-kinase-Akt pathway independently mediate anti-apoptotic signals in HepG2 liver cancer cells. Int J Cancer 92:55–62.

    Article  CAS  PubMed  Google Scholar 

  58. Wang, X., J. L. Martindale and N. J. Holbrook. 2000. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 275:39435–43.

    CAS  PubMed  Google Scholar 

  59. Ishikawa, Y. and M. Kitamura. 1999. Dual potential of extracellular signal-regulated kinase for the control of cell survival. Biochem Biophys Res Commun 264:696–701.

    Article  CAS  PubMed  Google Scholar 

  60. Moreno-Manzano, V., Y. Ishikawa, J. Lucio-Cazana and M. Kitamura. 1999. Suppression of apoptosis by all-trans-retinoic acid. Dual intervention in the c-Jun n-terminal kinase-AP-1 pathway. J Biol Chem 274:20251–8.

    Article  CAS  PubMed  Google Scholar 

  61. Iryo, Y., M. Matsuoka, B. Wispriyono, T. Sugiura and H. Igisu. 2000. Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells. Biochem Pharmacol 60:1875–82.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, Y., G. Yin, J. Surapisitchat, B. C. Berk and W. Min. 2001. Laminar flow inhibits TNF-induced ASK1 activation by preventing dissociation of ASK 1 from its inhibitor 14-3-3. J Clin Invest 107:917–23.

    CAS  PubMed  Google Scholar 

  63. Liu, W. et al. 2000. Endothelial cell survival and apoptosis in the tumor vasculature. Apoptosis 5:323–8.

    Article  CAS  PubMed  Google Scholar 

  64. Ichijo, H. et al. 1997. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–4.

    Article  CAS  PubMed  Google Scholar 

  65. Kanamoto, T. et al. 2000. Role of apoptosis signal-regulating kinase in regulation of the c-Jun N-terminal kinase pathway and apoptosis in sympathetic neurons. Mol Cell Biol 20:196–204.

    CAS  PubMed  Google Scholar 

  66. Barrett, W. C. et al. 1999. Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38:6699–705.

    Article  CAS  PubMed  Google Scholar 

  67. Droge, W. 2002. Free radicals in the physiological control of cell function. Physiol Rev 82:47–95.

    CAS  PubMed  Google Scholar 

  68. Roth, S. and W. Droge. 1987. Regulation of T-cell activation and T-cell growth factor (TCGF) production by hydrogen peroxide. Cell Immunol 108:417–24.

    Article  CAS  PubMed  Google Scholar 

  69. Roth, S. and W. Droge. 1991. Regulation of interleukin 2 production, interleukin 2 mRNA expression and intracellular glutathione levels in ex vivo derived T lymphocytes by lactate. Eur J Immunol 21:1911–7.

    Google Scholar 

  70. Roth, S., H. Gmunder and W. Droge. 1991. Regulation of intracellular glutathione levels and lymphocyte functions by lactate. Cell Immunol 136:95–104.

    Article  CAS  PubMed  Google Scholar 

  71. Axline, S. G. 1970. Functional biochemistry of the macrophage. Semin Hematol 7:142–60.

    CAS  PubMed  Google Scholar 

  72. Beiqing, L., M. Chen and R. L. Whisler. 1996. Sublethal levels of oxidative stress stimulate transcriptional activation of c-jun and suppress IL-2 promoter activation in Jurkat T cells. J Immunol 157:160–9.

    CAS  PubMed  Google Scholar 

  73. Berlett, B. S., R. L. Levine and E. R. Stadtman. 1996. Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin. J Biol Chem 271:4177–82.

    CAS  PubMed  Google Scholar 

  74. Schmid, E., A. Holtz-Wagenblatt, V. Hack and W. Droge. 1999. Phosphorylation of the insulin receptor kinase by phosphocreatine in combination with hydrogen peroxide. The structural basis of redox priming. FAseb J 13:1491–1500.

    CAS  PubMed  Google Scholar 

  75. Tirosh, A., R. Potashnik, N. Bashan and A. Rudich. 1999. Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. J Biol Chem 274:10595–602.

    Article  CAS  PubMed  Google Scholar 

  76. Porter, A. C. and R. R. Vaillancourt. 1998. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 17:1343–52.

    Article  CAS  PubMed  Google Scholar 

  77. Avruch, J. et al. 2001. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Harm Res 56:127–55.

    CAS  Google Scholar 

  78. Campbell, S. L., R. Khosravi-Far, K. L. Rossman, G. J. Clark and C. J. Der. 1998. Increasing complexity of Ras signaling. Oncogene 17:1395–413.

    Article  CAS  PubMed  Google Scholar 

  79. Superti-Furga, G. and S. A. Courtneidge. 1995. Structure-function relationships in Src family and related protein tyrosine kinases. Bioessays 17:321–30.

    Article  CAS  PubMed  Google Scholar 

  80. Brown, M. T. and J. A. Cooper. 1996. Regulation, substrates and functions of src. Biochim Biophys Acta 1287:121–49.

    PubMed  Google Scholar 

  81. Brumell, J. H., A. L. Burkhardt, J. B. Bolen and S. Grinstein. 1996. Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J Biol Chem 271:1455–61.

    Article  CAS  PubMed  Google Scholar 

  82. Hayashi, T., Y. Ueno and T. Okamoto. 1993. Oxidoreductive regulation of nuclear factor κ B. Involvement of a cellular reducing catalyst thioredoxin. J Biol Chem 268:11380–8.

    CAS  PubMed  Google Scholar 

  83. Nakamura, K. et al. 1993. Redox regulation of a src family protein tyrosine kinase p561ck in T cells. Oncogene 8:3133–9.

    CAS  PubMed  Google Scholar 

  84. Schoonbroodt, S. et al. 2000. Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I κ B alpha in activation by an oxidative stress. J Immunol 164:4292–300.

    CAS  PubMed  Google Scholar 

  85. Schreck, R., P. Rieber and P. A. Baeuerle. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κ B transcription factor and HIV-1. Embo J 10:2247–58.

    CAS  PubMed  Google Scholar 

  86. Akhand, A. A. et al. 1999. Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. J Biol Chem 274:25821–6.

    Google Scholar 

  87. Lander, H. M., et al. 1997. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272:4323–6.

    Article  CAS  PubMed  Google Scholar 

  88. Lander, H. M., A. T. Jacovina, R. J. Davis and J. M. Tauras. 1996. Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem 271:19705–9.

    CAS  PubMed  Google Scholar 

  89. Lander, H. M. et al. 1996. Redox regulation of cell signalling. Nature 381:380–1.

    Article  CAS  PubMed  Google Scholar 

  90. Lander, H. M., J. S. Ogiste, S. F. Pearce, R. Levi and A. Novogrodsky. 1995. Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J Biol Chem 270:7017–20.

    Article  CAS  PubMed  Google Scholar 

  91. Abe, J. and B. C. Berk. 1999. Fyn and JAK2 mediate Ras activation by reactive oxygen species. J Biol Chem 274:21003–10.

    CAS  PubMed  Google Scholar 

  92. Yordy, J. S. and R. C. Muise-Helmericks. 2000. Signal transduction and the Ets family of transcription factors. Oncogene 19:6503–13.

    Article  CAS  PubMed  Google Scholar 

  93. Segal, R. A. and M. E. Greenberg. 1996. Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci 19:463–89.

    CAS  PubMed  Google Scholar 

  94. Adler, V., Z. Yin, K. D. Tew and Z. Ronai. 1999. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18:6104–11.

    Article  CAS  PubMed  Google Scholar 

  95. Abe, J., M. Kusuhara, R. J, Ulevitch, B. C. Berk and J. D. Lee. 1996. Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem 271:16586–90.

    CAS  PubMed  Google Scholar 

  96. Callsen, D., J. Pfeilschifter and B. Brune 1998. Rapid and delayed p42/p44 mitogen-activated protein kinase activation by nitric oxide: the role of cyclic GMP and tyrosine phosphatase inhibition. J Immunol 161:4852–8.

    CAS  PubMed  Google Scholar 

  97. Elbirt, K. K., A. J. Whitmarsh, R. J. Davis and H. L. Bonkovsky. 1998. Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen-activated protein kinases. J Biol Chem 273:8922–31.

    Article  CAS  PubMed  Google Scholar 

  98. Baas, A. S. and B. C. Berk. 1995. Differential activation of mitogen-activated protein kinases by H2O2 and O2-in vascular smooth muscle cells. Circ Res 77:29–36.

    CAS  PubMed  Google Scholar 

  99. Ushio-Fukai, M., R. W. Alexander, M. Akers and K. K. Griendling. 1998. Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. p38. J Biol Chem 273:15022–9.

    CAS  PubMed  Google Scholar 

  100. Pfeilschifter, J. and A. Huwiler. 1996. Nitric oxide stimulates stress-activated protein kinases in glomerular endothelial and mesangial cells. FEBS Lett 396:67–70.

    Article  CAS  PubMed  Google Scholar 

  101. Yoshizumi, M., J. Abe, J. Haendeler, Q. Huang and B. C. Berk. C. 2000. Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species. J Biol Chem 215:11706–12.

    Google Scholar 

  102. Pu, M. et al. 1996. Evidence of a novel redox-linked activation mechanism for the Src kinase which is independent of tyrosine 527-mediated regulation. Oncogens 13:2615–22.

    CAS  Google Scholar 

  103. Adler, V. et al. 1999. Regulation of JNK signaling by GSTp. Embo J 18:1321–34.

    Article  CAS  PubMed  Google Scholar 

  104. Hehner, S. P. et al. 2000. Enhancement of T cell receptor signaling by a mild oxidative shift in the intracellular thiol pool. J Immunol 165:4319–28.

    CAS  PubMed  Google Scholar 

  105. Doan, T. N., D. L. Gentry, A. A. Taylor and S. J. Elliott. 1994. Hydrogen peroxide activates agonist-sensitive Ca(2+)-flux pathways in canine venous endothelial cells. Biochem J 297(Pt 1):209–15.

    CAS  PubMed  Google Scholar 

  106. Dreher, D. and A. F. Junod. 1996. Role of oxygen free radicals in cancer development. Eur J Cancer 32A:30–8.

    CAS  PubMed  Google Scholar 

  107. Hallbrucker, C., M. Ritter, F. Lang, W. Gerok and D. Haussinger. 1993. Hydroperoxide metabolism in rat liver. K+ channel activation, cell volume changes and eicosanoid formation. Eur J Biochem 211:449–58.

    Article  CAS  PubMed  Google Scholar 

  108. Kumasaka, S., H. Shoji and E. Okabe. 1999. Novel mechanisms involved in superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum linked to cyclic ADP-ribose stimulation. Antioxid Redox Signal 1:55–69.

    CAS  PubMed  Google Scholar 

  109. Okabe, E. et al. 1987. Calmodulin participation in oxygen radical-induced cardiac sarcoplasmic reticulum calcium uptake reduction. Arch Biochem Biophys 255:464–8.

    Article  CAS  PubMed  Google Scholar 

  110. Okabe, E. et al. 1991. The effect of ryanodine on oxygen free radical-induced dysfunction of cardiac sarcoplasmic reticulum. J Pharmacol Exp Ther 256:868–75.

    CAS  PubMed  Google Scholar 

  111. Okabe, E., M. Sugihara, K. Tanaka, H. Sasaki and H. Ito. 1989. Calmodulin and free oxygen radicals interaction with steady-state calcium accumulation and passive calcium permeability of cardiac sarcoplasmic reticulum. J Pharmacol Exp Ther 250:286–92.

    CAS  PubMed  Google Scholar 

  112. Roveri, A. et al. 1992. Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Arch Biochem Biophys 297:265–70.

    Article  CAS  PubMed  Google Scholar 

  113. Saitoh, M. et al. 1998. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. Embo J 17:2596–606.

    Article  CAS  PubMed  Google Scholar 

  114. Matsui, M. et al. 1996. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178:179–85.

    Article  CAS  PubMed  Google Scholar 

  115. Sachi, Y. et al. 1995. Induction of ADF/TRX by oxidative stress in keratinocytes and lymphoid cells. Immunol Lett 44:189–93.

    Article  CAS  PubMed  Google Scholar 

  116. Taniguchi, Y., Y. Taniguchi-Ueda, K. Mori and J. Yodoi. 1996. A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemia-derived factor (ADF)/human thioredoxin (Trx) gene. Nucleic Acids Res 24:2746–52.

    Article  CAS  PubMed  Google Scholar 

  117. Gopalakrishna, R. and W. B. Anderson. 1989. Ca2+− and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci U S A 86:6758–62.

    CAS  PubMed  Google Scholar 

  118. Konishi, H. et al. 1997. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci U S A 94:11233–7.

    Article  CAS  PubMed  Google Scholar 

  119. Angel, P. and M. Karin. 1991. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–57.

    CAS  PubMed  Google Scholar 

  120. Shaulian, E. and M. Karin. 2002. AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–6.

    Article  CAS  PubMed  Google Scholar 

  121. Karin, M. and E. Shaulian. 2001. AP-1: linking hydrogen peroxide and oxidative stress to the control of cell proliferation and death. IUBMB Life 52:17–24.

    CAS  PubMed  Google Scholar 

  122. Shaulian, E. and M. Karin. 2001. AP-1 in cell proliferation and survival. Oncogene 20:2390–400.

    Article  CAS  PubMed  Google Scholar 

  123. Shaulian, E. et al. 2000. The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell 103:897–907.

    Article  CAS  PubMed  Google Scholar 

  124. Shaulian, E. and M. Karin. 1999. Stress-induced JNK activation is independent of Gadd45 induction. J Biol Chem 274:29595–8.

    Article  CAS  PubMed  Google Scholar 

  125. Kuge, S. and N. Jones. 1994. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. Embo J 13:655–64.

    CAS  PubMed  Google Scholar 

  126. Flohe, L., R. Brigelius, C. Saliou and M. Traber. 1997. Redox regulation of NF-κB activation. Free Radio Biol Med 22:1115–1126.

    CAS  Google Scholar 

  127. Piette, J. et al. 1997. Multiple redox regulation in NF-κB transcription factor activation Biol Chem 378:1237–45.

    CAS  PubMed  Google Scholar 

  128. Sen, C. and L. Packer. 1996. Antioxidant and redox regulation of gene transcription. Faseb J 10:709–720.

    CAS  PubMed  Google Scholar 

  129. Crawford, D., I. Zbinden, P. Amstad and P. Cerutti. 1987. Expression of oxidant stress-related genes in tumor promotion of mouse epidermal cells JB6., pp. 183–190 Plenum, New York

    Google Scholar 

  130. Janssen, Y. M., S. Matalon and B. T. Mossman. 1997. Differential induction of c-fos, c-jun, and apoptosis in lung epithelial cells exposed to ROS or RNS. Am J Physiol 273:L789–96.

    CAS  PubMed  Google Scholar 

  131. Meyer, M, R. Schreck and P. A. Baeuerle. 1993. H2O2 and antioxidants have opposite effects on activation of NF-κ B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. Embo J 12:2005–15

    CAS  PubMed  Google Scholar 

  132. Maki, A., I. K. Berezesky, J. Fargnoli, N. J. Holbrook and B. F. Trump. 1992. Role of [Ca2+]i in induction of c-fos, c-jun, and c-myc mRNA in rat PTE after oxidative stress. Faseb J 6:919–24.

    CAS  PubMed  Google Scholar 

  133. Morris, B. J. 1995. Stimulation of immediate early gene expression in striatal neurons by nitric oxide. J Biol Chem 270:24740–4.

    CAS  PubMed  Google Scholar 

  134. Muehlematter, D., T. Ochi and P. Cerutti. 1989. Effects of tert-butyl hydroperoxide on promotable and non-promotable JB6 mouse epidermal cells. Chem Biol Interact 71:339–52.

    CAS  PubMed  Google Scholar 

  135. Shibanuma, M., T. Kuroki and K. Nose. 1988. Induction of DNA replication and expression of proto-oncogene c-myc and c-fos in quiescent Balb/3T3 cells by xanthine/xanthine oxidase. Oncogene 3:17–21.

    CAS  Google Scholar 

  136. Weston, C. R. and R. J. Davis. 2002. The JNK signal transduction pathway. Curr Opin Genet Dev 12:14–21.

    Article  CAS  PubMed  Google Scholar 

  137. Galter, D., S. Mihm and W. Droge. 1994. Distinct effects of glutathione disulphide on the nuclear transcription factor κ B and the activator protein-1. Eur J Biochem 221:639–48.

    Article  CAS  PubMed  Google Scholar 

  138. Rebollo, A. et al. 2000. Bcl-3 expression promotes cell survival following interleukin-4 deprivation and is controlled by API and AP1-like transcription factors. Mol Cell Biol 20:3407–16.

    Article  CAS  PubMed  Google Scholar 

  139. Lei, K. et al. 2002. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 22:4929–42.

    Article  CAS  PubMed  Google Scholar 

  140. Jenab, S. and V. Quinones-Jenab. 2002. The effects of interleukin-6, leukemia inhibitory factor and interferon-gamma on STAT DNA binding and c-fos mRNA levels in cortical astrocytes and C6 glioma cells. Neuroendocrinol Lett 23:325–8.

    CAS  PubMed  Google Scholar 

  141. Kolonics, A. et al. 2001, Unregulated activation of STAT-5, ERK1/2 and c-Fos may contribute to the phenotypic transformation from myelodysplastic syndrome to acute leukaemia. Haematologia (Budap) 31:125–38.

    CAS  Google Scholar 

  142. Servidei, T. et al. 1998. Coordinate regulation of STAT signaling and c-fos expression by the tyrosine phosphatase SHP-2. J Biol Chem 273:6233–41.

    Article  CAS  PubMed  Google Scholar 

  143. Simon, A. R., U. Rai, B. L. Fanburg and B. H. Cochran. 1998. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol 275:C1640–52.

    CAS  PubMed  Google Scholar 

  144. Monteiro, H. P. and A. Stern. 1996. Redoxmodulation of tyrosine phosphorylation-dependent signal transduction pathways. Free Radic Biol Med 21:323–33.

    Article  CAS  PubMed  Google Scholar 

  145. Cramer, P. and C. W. Muller, 1999. A firm hand on NFκB: structures of the IκBalpha-NFκB complex. Structure Folds Des 7:R1–6.

    CAS  Google Scholar 

  146. Beg, A. A., T. S. Finco, P. V. Nantermet. and A. S. Baldwin, Jr. 1993. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I κ B alpha: a mechanism for NF-κ B activation. Mol Cell Biol 13:3301–10.

    CAS  PubMed  Google Scholar 

  147. Kretz-Remy, C., E. E. Bates and A. P. Arrigo. 1998. Amino acid analogs activate NF-κB through redox-dependent IκB-alpha degradation by the proteasome without apparent IκB phosphorylation. Consequence on HIV-1 long terminal repeat activation, J Biol Chem 273:3180–91.

    Article  CAS  PubMed  Google Scholar 

  148. Kretz-Remy, C., P. Mehlen, M. E. Mirault and A. P. Arrigo. 1996. Inhibition of I κ B-alpha phosphorylation and degradation and subsequent NF-κ B activation by glutathione peroxidase overexpression. J Cell Biol 133:1083–93.

    Article  CAS  PubMed  Google Scholar 

  149. Manna, S. K., H. J. Zhang, T. Van, L. W. Oberley and B. B. Aggarwal. 1998. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-κB and activated protein-1. J Biol Chem 273:13245–54.

    CAS  PubMed  Google Scholar 

  150. Traenckner, E. B., S. Wilk and P. A. Baeuerle. 1994. A proteasome inhibitor prevents activation of NF-κ B and stabilizes a newly phosphorylated form of I κ B-alpha that is still bound to NF-κ B Embo J 13:5433–41.

    CAS  PubMed  Google Scholar 

  151. Mihm, S., J. Ennen, U. Pessara, R. Kurth and W. Droge. 1991. Inhibition of HIV-1 replication and NF-κ B activity by cysteine and cysteine derivatives. Aids 5:497–503.

    CAS  PubMed  Google Scholar 

  152. Romas, E., M. T. Gillespie and T. J. Martin. 2002. Involvement of receptor activator of NF-κB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 30:340–6.

    Article  CAS  PubMed  Google Scholar 

  153. Said, S. I. and K. G. Dickman. 2000. Pathways of inflammation and cell death in the lung: modulation by vasoactive intestinal peptide. Regul Pept 93:21–9.

    Article  CAS  PubMed  Google Scholar 

  154. Leong, K. G. and A. Karsan. 2000. Signaling pathways mediated by tumor necrosis factor alpha. Histol Histopathol 15:1303–25.

    CAS  PubMed  Google Scholar 

  155. Hatada, E. N., D. Krappmann and C. Scheidereit. 2000. NF-κB and the innate immune response. Curr Opin Immunol 12:52–8.

    Article  CAS  PubMed  Google Scholar 

  156. Li, X. and G. R. Stark. 2002. NFκB-dependent signaling pathways. Exp Hematol 30:285–96.

    CAS  PubMed  Google Scholar 

  157. Glasgow, J. N. et al. 2001. Transcriptional regulation of the BCL-X gene by NF-κB is an element of hypoxic responses in the rat brain. Neurochem Res 26:647–59.

    Article  CAS  PubMed  Google Scholar 

  158. Kuhnel, F. et al. 2000. NF-κB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis. J Biol Chem 275:6421–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Giulivi, C., Oursler, M.J. (2003). Role of Mitochondrial Oxygen and Nitrogen Reactive Species in Signaling. In: Forman, H.J., Fukuto, J., Torres, M. (eds) Signal Transduction by Reactive Oxygen and Nitrogen Species: Pathways and Chemical Principles. Springer, Dordrecht. https://doi.org/10.1007/0-306-48412-9_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-48412-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1117-7

  • Online ISBN: 978-0-306-48412-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics