Skip to main content

Microcosms for Site-Specific Evaluation of Enhanced Biological Reductive Dehalogenation

  • Chapter
Dehalogenation

5. Conclusions

Microcosm studies are currently one of the best tools available for the assessment of a site-specific biodehalogenation potential. Physiological and quantitative studies conducted in laboratory microcosms can be combined with molecular tools to determine which dechlorinating bacteria and supporting community members are present, and can also help to develop rate information for the design of field implementation. Until existing technologies for rapid, inexpensive detection of specific microbial populations and the active expression of important genes are improved, laboratory microcosm studies continue to be a vital tool for assessing bioremediation potential in the field and providing a design basis for implementation. Small-scale field tests or in situ microcosms are currently the only alternative to laboratory microcosm studies. Ultimately, for full-scale site remediation, reliable, flexible models are needed which can aid in design and management of these complex systems. The determination of relevant, site-specific parameters for input into the models is another important potential use for laboratory microcosm studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriaens P, Lendvay JM, McCormick ML & Dean SM (1997) Biogeochemistry and dechlorination potential at the St. Joseph aquifer-Lake Michigan interface. In: Alleman BC & Leeson A (Eds) The Fourth International In Situ and Onsite Bioremediation Symposium. Vol 3 (pp 173–178) Battelle Press, Columbus, OH

    Google Scholar 

  2. Adrian L, Szewzyk U, Wecke J & Gortsch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408:580–583

    Article  CAS  Google Scholar 

  3. Alleman, BE, Morse, JM, Snyder, F, Ackert, L, Sewell, G, Gossett, JM & Fennell, DE (2000) Reductive anaerobic biological in situ treatment technology (RABITT) treatability test: Results from Cape Canaveral Air Station. Presented at the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterey, CA, May 22–25

    Google Scholar 

  4. Allen HE, Fu G, Boothman W, DiToro DM & Mahony JD (1991) Determination of acid volatile sulfide and selected simultaneously extractable metals in sediment. U.S.EPA 821/R-91-100. US Environmental Protection Agency, U.S. Government Printing Office: Washington, DC

    Google Scholar 

  5. Aravena R, Wassenaar LI & Barker JF (1995) Distribution and isotopic characterization of methane in a confined aquifer in southern Ontario, Canada. J. Hydrol. 173:51–70

    CAS  Google Scholar 

  6. Archer DB & Powell GE (1985) Dependence of the specific growth rate of methanogenic mutualistic cocultures on the methanogen. Arch. Microbiol. 141:133–137

    Article  CAS  Google Scholar 

  7. Bagley DM (1998) Systematic approach for modeling tetrachloroethene biodegradation. J. Environ. Eng. 124:1076–1086

    CAS  Google Scholar 

  8. Ballapragada BS, Stensel HD, Puhakka JA & Ferguson JF (1997) Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environ. Sci. Technol. 31:1728–1734

    CAS  Google Scholar 

  9. Barrio-Lage GA, Parsons FZ, Nassar RS & Lorenzo, PA (1987) Biotransformation of trichloroethylene in a variety of subsurface materials. Environ. Toxicol. Chem. 6:571–578

    CAS  Google Scholar 

  10. Baveye P, Vandevivere P, Hoyle BL, DeLeo PC & Sanchez de Lozada, DC (1998) Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Crit. Rev. Environ. Sci. Technol. 28:123–191

    CAS  Google Scholar 

  11. de Blanc PC, McKinney DC, Speitel Jr. GE, Sepehrnoori K & Delshad M (1996) A 3-D NAPL flow and biodegradation model. In: Reddi LN (Ed) Non-Aqueous Phase Liquids (NAPLs) in Subsurface Environments: Assessment and Remediation (pp 478–489) ASCE, Washington, DC

    Google Scholar 

  12. Bradley PM & Chapelle FH (1996) Anaerobic mineralization of vinyl chloride in Fe(III)-reducing aquifer sediments. Environ. Sci. Technol. 30:2084–2086

    Article  CAS  Google Scholar 

  13. Bradley PM & Chapelle FH (2000) Acetogenic microbial degradation of vinyl chloride. Environ. Sci. Technol. 34:2761–2763

    CAS  Google Scholar 

  14. Brockman FJ & Murray CJ (1997) Subsurface microbiological heterogeneity: Current knowledge, descriptive approaches, and applications. FEMS Microbiol. Rev. 20:231–247

    Article  CAS  Google Scholar 

  15. Brown, D, Burns, DA, Bell, M & Lee, MD (2001) Biologically-enhanced reductive dechlorination. In: Magar V, Fennell D, Alleman B, Morse JL & Leeson A (Eds) Anaerobic Degradation of Chlorinated Solvents Vol 6, Battelle Press, Columbus, OH

    Google Scholar 

  16. Carney A (1996) M.S. Thesis, Cornell University, Ithaca, NY

    Google Scholar 

  17. Carroll AB, Fennell DE, Anguish TW, Gossett JM & Zinder SH (2000) Molecular characterization of TCE-contaminated sites. Presented at the 100th General Meeting of the American Society for Microbiology. Abstract Q-129. Los Angeles, CA, May 21–25, 2000

    Google Scholar 

  18. Chapelle FH (1997) Identifying redox conditions that favor the natural attenuation of chlorinated ethenes in contaminated ground-water systems In: Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water (Dallas, TX, 1996), EPA/540/R-97/504; US Environmental Protection Agency, (pp 19–22), U.S. Government Printing Office: Washington, DC

    Google Scholar 

  19. Cirpka O (1995) Influence of hydraulic aquifer properties on reductive dechlorination of tetrachloroethene. In: Hinchee RE, Leeson A & Semprini L (Eds) Third International In Situ and On-SiteBioreclamation Symposium Vol. 3 (pp 25–34) Battelle Press, Columbus, OH

    Google Scholar 

  20. Cirpka OA, Windfuhr C, Bisch G, Granzow S, Scholz-Muramatsu H & Kobus H (1999) Microbial reductive dechlorination in a large-scale sandbox model. J. Environ. Eng. 125:861–870

    CAS  Google Scholar 

  21. Clement TP, Sun Y, Hooker BS & Petersen JN (1998) Modeling multispecies reactive transport in groundwater. Ground Wat. Mon. Remed. 18:79–92

    CAS  Google Scholar 

  22. Cord-Ruwisch R, Seitz H-J & Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350–357

    Article  CAS  Google Scholar 

  23. Cox S (1999) personal communication

    Google Scholar 

  24. Cozzarelli IM, Herman JS & Baedecker MJ (1995) Fate of microbial metabolites of hydrocarbons in a coastal plain aquifer: the role of electron acceptors. Environ. Sci. Technol. 29:458–469

    CAS  Google Scholar 

  25. Delwiche EA, Pestka JJ & Tortorello ML (1985) The Veillonellae: Gram-negative cocci with a unique physiology. Ann. Rev. Microbiol. 39:175–193

    CAS  Google Scholar 

  26. DeWeerd KA, Concannon F & Suflita JM (1991) Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl. Environ. Microbiol. 57:1929–1934

    Google Scholar 

  27. Dojka MA, Hugenholtz P, Haack SK & Pace NR (1998) Microbial diversity in a hydrocarbon-and chlorinated solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64:3869–3877

    CAS  Google Scholar 

  28. Elberson MA, Tabinowski JA, Ebersole RC, Ellis DE & Hendrickson ER (2000) Detection and characterization of Dehalococcoides ethenogenes’ 16S rRNA sequences found in groundwater and soils contaminated with PCE and TCE. Presented at the 100th General Meeting of the American Society for Microbiology. Abstract Q-125. Los Angeles, CA, May 21–25, 2000

    Google Scholar 

  29. Fennell DE (1998) PhD Thesis, Cornell University, Ithaca, NY

    Google Scholar 

  30. Fennell DE, Carroll AB, Gossett JM & Zinder SH (2001) Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ. Sci. Technol. 35:1830–1839

    Article  CAS  Google Scholar 

  31. Fennell DE & Gossett JM (1998) Modeling the production of and competition for hydrogen in a dechlorinating culture. Environ. Sci. Technol. 32:2450–2460

    Article  CAS  Google Scholar 

  32. Fennell DE, Gossett JM & Zinder SH (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ. Sci. Technol. 31:918–926

    Article  CAS  Google Scholar 

  33. Flynn SJ, Loffler FE & Tiedje JM (2000) Microbial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination of cis-DCE and VC. Environ. Sci. Technol. 34:1056–1061

    Article  CAS  Google Scholar 

  34. Freedman DL & Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55:2144–2151

    CAS  Google Scholar 

  35. Gao J, Skeen RS, Hooker BS & Quesenberry RD (1997) Effects of several electron donors on tetrachloroethene dechlorination in anaerobic soil microcosms. Wat. Res. 31:2479–2486

    CAS  Google Scholar 

  36. Gerhardt P, Murry R, Wood W & Krieg N (1994) Methods For General and Molecular Bacteriology; ASM: Washington, DC

    Google Scholar 

  37. Gerritse J, Alphenaar A & Gottschal JC (1998) Ecophysiology and application of dechlorinating anaerobes. In: Wilson TE (Ed) Water Resources and the Urban Environment-98. Proceedings of the 1998 National Conference on Environmental Engineering (pp227-232) ASCE, Reston VA

    Google Scholar 

  38. Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD & Gottschal JC (1999) Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl. Environ. Microbiol. 65:5212–5221

    CAS  Google Scholar 

  39. Gibson SA, Roberson DS, Russell HH & Sewell GW (1994) Effects of three concentrations of mixed fatty acids on dechlorination of tetrachloroethene in aquifer microcosms. Environ. Toxicol. Chem. 13:453–460

    CAS  Google Scholar 

  40. Gibson SA & Sewell GW (1992) Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols. Appl. Environ. Microbiol. 58:1392–1393

    CAS  Google Scholar 

  41. Gibson SA & Suflita JM (1986) Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl. Environ. Microbiol. 52:681–688

    CAS  Google Scholar 

  42. Hackley KC, Liu CL & Trainor D (1999) Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities. Appl. Geochem. 14:119–131

    Article  CAS  Google Scholar 

  43. Hansen KH, Ahring BK & Raskin L (1999) Quantification of syntrophic fatty acid-β-oxidizing bacteria in amesophilic biogas reactor by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 65:4767–4774

    CAS  Google Scholar 

  44. Hansen, TA (1993) Carbon metabolism of the sulfate-reducing bacteria. In: Odom JM & Singleton R, Jr. (Eds) The Sulfate-Reducing Bacteria: Contemporay Perspectives, (pp 21–40) Springer-Verlag, New York

    Google Scholar 

  45. Harkness MR, Bracco AA, Brennan, Jr. MJ, Deweerd KA & Spivack, JL (1999) Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns. Environ. Sci. Technol. 33:1100–1109

    Article  CAS  Google Scholar 

  46. Haston ZC & McCarty PL (1999) Chlorinated ethene half-velocity coefficients (Ks) for reductive dehalogenation. Environ. Sci. Technol. 33:223–226

    Article  CAS  Google Scholar 

  47. Hino T & Kuroda S (1993) Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate. Appl. Environ. Microbiol. 59:255–259

    CAS  Google Scholar 

  48. Hoh CY & Cord-Ruwisch R (1996) A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant. Biotechnol. Bioeng. 51:597–604

    Article  CAS  Google Scholar 

  49. Hunkeler D, Aravena R & Butler BJ (1999) Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable isotope ratios: Microcosm and field studies. Environ. Sci. Technol. 33:2733–2738

    Article  CAS  Google Scholar 

  50. Hutchins SR (1997) Effects of microcosm preparation on rates of toluene biodegradation under denitrifying conditions. J. Indust. Microbiol. Biotechnol. 18:170–176

    CAS  Google Scholar 

  51. InTeleCom, HMTRI (1997) Site Characterization: Sampling and Analysis, Van Nostrand Reinhold, New York

    Google Scholar 

  52. Kengen SWM, Breidenbach CG, Felske A, Stams AJM, Schraa G & de Vos WM (1999) Reductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene by a thermophilic anaerobic enrichment culture. Appl. Environ. Microbiol. 65:2312–2316

    CAS  Google Scholar 

  53. Kreikenbohm R & Bohl E (1986) A mathematical model of syntrophic cocultures in the chemostat. FEMS Microbiol. Ecol. 38:131–140

    Article  CAS  Google Scholar 

  54. Kurtz JC, Devereux R, Barkay T & Jonas RB (1998) Evaluation of sediment slurry microcosms for modeling microbial communities in estuarine sediments. Environ. Tox. Chem. 17:1274–1281

    CAS  Google Scholar 

  55. Laanbroek HJ, Geerligs HJ, Peijnenburg AACM & Siesling J (1983) Competition for L-Iactate between Desulfovibrio, Veillinella, and Acetobacterium species isolated from anaerobic intertidal sediments. Microbiol. Ecol. 9:341–354

    Article  CAS  Google Scholar 

  56. Labib F, Ferguson JF, Benjamin MM, Merigh M & Ricker NL (1993) Mathematical modeling of an anaerobic butyrate degrading consortia: Predicting their response to organic overloads. Environ. Sci. Technol. 27:2673–2684

    Article  CAS  Google Scholar 

  57. Lige JE, MacFarlane ID & Hundt TR (1995) Treatability study to evaluate in situ chlorinated solvent and pesticide bioremediation. In: Hinchee RE, Leeson A & Setnprini L (Eds) Third International In Situ and Onsite Bioremediation Symposium, Vol 4 (pp 313–320) Battelle Press, Columbus, OH

    Google Scholar 

  58. Löffler FE, Sun Q, Li J & Tiedje JM (2000) 16S rRNA gene based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl. Environ. Microbiol. 66:1369–1374

    Google Scholar 

  59. Löffler FE, Tiedje JM & Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl. Environ. Microbiol. 65:4049–4056

    Google Scholar 

  60. Lovely DR, Chapelle FH & Woodward JC (1994) Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ. Sci.Technol. 28:1205–1210

    Article  Google Scholar 

  61. Lovely DR & Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta. 52:2993–3003

    Google Scholar 

  62. Lovely DR & Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 45:187–192

    Google Scholar 

  63. Madsen EL (1998) Theoretical and applied aspects of bioremediation: The influence of microbiological processes on organic contaminant compounds in field sites In: Burlage RS, Atlas R, Stahl D, Geesy G & Sayler G (Eds) Techniques in Microbial Ecology, (pp 354–407) Oxford University Press, New York

    Google Scholar 

  64. Magnuson JK, Stern RV, Gossett JM, Zinder SH & Burris DR (1998) Reductive dechlorination of a tetrachloroethene to ethene by a two-component enzyme pathway. Appl. Environ. Microbiol. 64:1270–1275

    CAS  Google Scholar 

  65. Major DW, Hodgins EW & Butler BJ (1991) Field and laboratory evidence of in situ biotransformation of tetrachloroethene to ethene and ethane at a chemical transfer facility in north Toronto In: Hinchee RE & Olfenbuttel RF (Eds) On-Site Bioreclamation — Processes for Xenobiotic and Hydrocarbon Treatment, (pp 113–133) Butterworth-Heinemann, Boston, MA

    Google Scholar 

  66. Maymó-Gatell, X (1997) PhD Thesis, Cornell University, Ithaca, NY

    Google Scholar 

  67. Maymó-Gatell X, Chien Y, Gossett JM & Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science. 276:1568–1571

    Google Scholar 

  68. Mazur CS & Jones WJ (2001) Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation, Environ. Sci. Technol. 35:4783–4788

    CAS  Google Scholar 

  69. Milde G, Nerger M & Mergler R (1988) Biological degradation of volatile chlorinated hydrocarbons in groundwater. Wat. Sci. Tech. 20:67–73

    CAS  Google Scholar 

  70. Monserrate E & Häggblom MM (1997) Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions. Appl. Environ. Microbiol. 63:3911–3915

    CAS  Google Scholar 

  71. Morse JL, Alleman BC, Gossett JM, Zinder SH, Fennell DE, Sewell GW & Vogel CM (1997) A treatability test for evaluating the potential applicability of the reductive anaerobic biological in situ treatment technology (RABITT) to remediate chloroethenes. A Draft Technical Protocol developed for the Environmental Security Technology Certification Program, Department of Defense, U.S. Government Printing Office: Washington, DC

    Google Scholar 

  72. Odom JM, Tabinowski J, Lee MD & Fathepure BZ (1995) Anaerobic biodegradation of chlorinated solvents: Comparative laboratory study of aquifer microcosms. In: Hinchee RE, Leeson A & Semprini L (Eds) Bioremediation of Chlorinated Solvents, (pp 17–24) Battelle Press, Columbus, OH

    Google Scholar 

  73. Ohtsubo S, Demizu K, Kohno S, Miura I, Ogawa T & Fukuda H (1992) Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl. Environ. Micro. 58:703–705

    CAS  Google Scholar 

  74. Parsons Engineering Science (1997) RCRA Facility Investigation Report For Facility 1381 SWMU 21 (DP-32) Volume 1 of 2. January.

    Google Scholar 

  75. Pavlostathis SG & Prytula MT (2000) Kinetics of the sequential microbial reductive dechlorination of hexachlorobenzene. Environ. Sci. Technol. 34:4001–4009

    Article  CAS  Google Scholar 

  76. Peyton BM, Truex MJ, Skeen RS & Hooker BS (1995) Design of an in situ carbon tetrachloride bioremediation system. In: Hinchee RE, Leeson A & Semprini L (Eds) Third International In Situ and On-Site Bioremediation Symposium Vol 3 (pp 111–116) Battelle Press, Columbus, OH

    Google Scholar 

  77. Powell GE (1984) Equalisation of specific growth rates for syntrophic associations in batch culture. J. Chem. Tech. Biotechnol. 34B:97–100

    CAS  Google Scholar 

  78. Pulliam-Holloman TR, Elberson MA, Cutter LA, May HD & Sowers KR (1998) Characterization of a defined 2,3,5,6-tetrachlorobiphenyl-ortho-dechlorinating microbial community by comparative sequence analysis of genes encoding for 16S rRNA. Appl. Environ. Microbiol. 64:359–367

    Google Scholar 

  79. Rifai HS, Newell CJ, Miller RN, Taffinder S & Rounsaville M (1995) Simulation of natural attenuation with multiple electron acceptors In: Ward, H. (Ed) Intrinsic Bioremediation, Vol 1 (pp 53–59) Battelle Press, Columbus, OH

    Google Scholar 

  80. Rittmann BE & McCarty PL (2001) Environmental Biotechnology: Principles and Applications, McGraw-Hill Higher Education, New York

    Google Scholar 

  81. Robinson JA & Tiedje JM (1984) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137:26–32

    Article  CAS  Google Scholar 

  82. Rosner BM, McCarty PL & Spormann AM (1997) In vitro studies on reductive dechlorination of vinyl chloride dehalogenation by an anaerobic mixed culture. Appl. Environ. Microbiol. 63:4139–4144

    CAS  Google Scholar 

  83. Schink B & Friedrich M (1994) Energetics of syntrophic fatty acid degradation. FEMS Microbiol. Rev. 15:85–94

    Article  CAS  Google Scholar 

  84. Schink B, Kremer DR & Hansen TA (1987) Pathway of propionate formation from ethanol in Pelobacter propionicus. Arch. Microbiol. 147:321–327

    Article  CAS  Google Scholar 

  85. Sewell GW & Gibson SA (1991) Stimulation of the reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by the addition of toluene. Envir. Sci. Technol. 25:982–984

    CAS  Google Scholar 

  86. Skubal KL, Haack SK, Forney, LJ & Adriaens P (1999) Effects of dynamic redox zonation on the potential for natural attenuation of trichloroethylene at a fire-training-impacted aquifer. Phys. Chem. Earth (B). 24:517–527

    Google Scholar 

  87. Slenders H, Bosma T, Gerritse J, Borger A, Baartmans R, Hofstra S, de Sain H, Hetterschijt R, te Street C & de Kreuk H (1999) Bioremediation of chlorinated solvents in peat and natural attenuation of plume. In: Leeson A & Alleman BC (Eds) The Fifth International In Situ and Onsite Bioremediation Symposium Vol 2 (pp 141–146) Battelle Press, Columbus, OH

    Google Scholar 

  88. Smatlak CR, Gossett JM & Zinder SH (1996) Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in a anaerobic enrichment culture. Environ. Sci. Technol. 30:2850–2858

    Article  CAS  Google Scholar 

  89. Sorenson KS, Jr. (2000) PhD Thesis; University of Idaho, Moscow, ID

    Google Scholar 

  90. Sorenson KS, Jr., Peterson LN & Ely RL (1999) Enhanced reductive dechlorination of TCE in a basalt aquifer. In: Leeson A & Alleman BC (Eds) The Fifth International In Situ and On-site Bioremediation Symposium, Vol 2 (pp 147–155) Battelle Press, Columbus, OH

    Google Scholar 

  91. Stiber NA, Pantazidou M & Small MJ (1999) Expert system methodology for evaluating reductive dechlorination at TCE sites. Environ. Sci. Technol. 33:3012–3020

    Article  CAS  Google Scholar 

  92. Stover MA (1993) MS Thesis; Cornell University, Ithaca, NY

    Google Scholar 

  93. Sun Y, Petersen JN, Clement TP & Hooker BS (1996) A modular model for simulating natural attenuation of chlorinated organics in saturated ground-water aquifers. In: Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water (Dallas, TX, 1996), EPA/540/R-97/504; US Environmental Protection Agency, (pp 170), U.S. Government Printing Office: Washington, DC

    Google Scholar 

  94. Tandoi V, DiStefano TD, Bowser PA, Gossett JM & Zinder SH (1994) Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture. Environ. Sci. Technol. 28:973–979

    Article  CAS  Google Scholar 

  95. Tonnaer H, Alphenaar A, de Wit H, Grutters M, Spuij F, Gerritse J & Gottschal JC (1997) Modelling of anaerobic dechlorination of chloroethenes for in situ bioremediation. In: Alleman, BC & Leeson, A (Eds) The Fourth International In Situ and On-Site Bioremediation Symposium, Vol 5, (pp 591–596) Battelle Press, Columbus, OH

    Google Scholar 

  96. USEPA (1991) Site characterization for subsurface remediation. EPA/625/4-91/026; US Environmental Protection Agency, U.S. Government Printing Office: Washington, DC

    Google Scholar 

  97. Verce MF, Ulrich RL & Freedman DL (2000) Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl. Environ. Microbiol. 66:3535–3542

    Article  CAS  Google Scholar 

  98. de Vries W, van Wyck-Kapteyn MC & Stouthamer AH (1973) Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. J. Gen. Microbiol. 76:31–41

    Google Scholar 

  99. Wiedemeier TH, Swanson MA, Moutoux DE, Gordon EK, Wilson JT, Wilson BH, Kampbell DH, Hansen JE, Haas P & Chapelle FH (1996) Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater; EPA/600/R-98/128; US Environmental Protection Agency, U.S. Government Printing Office: Washington, DC

    Google Scholar 

  100. Willis M, Shoemaker C, Gossett J & Fennell D (1999) Applications of a competitive hydrogenotrophic biological dechlorination transport model for groundwater remediation. In: Leeson A & Alleman BC (Eds) The Fifth International In Situ and On-Site Bioremediation Symposium, Vol 2 (pp 27–33) Battelle Press, Columbus, OH

    Google Scholar 

  101. Wilson, BH, Wilson, JT & Luce, D (1997) Design and interpretation of microcosm studies for chlorinated compounds. In: Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water (Dallas, TX, 1996), EPA/540/R-97/504; US Environmental Protection Agency, (pp 23–30), U.S. Government Printing Office: Washington, DC

    Google Scholar 

  102. Wood WW (2000) It’s the heterogeneity! Ground Wat. 38:1

    CAS  Google Scholar 

  103. Yager RM, Bilotta SE, Mann CL & Madsen EL (1997) Metabolic adaptation and in situ attenuation of chlorinated ethenes by naturally-occurring microorganisms in a fractured dolomite aquifer near Niagara Falls, New York Environ. Sci. Technol. 31:3138–3147

    CAS  Google Scholar 

  104. Yang Y & McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 32:3591–3597

    CAS  Google Scholar 

  105. Young RG & Gossett JM (1997) Effect of environmental parameters and concentrations on dechlorination of chloroethenes. Presented at the Fourth International In Situ and On-Site Bioremediation Symposium. New Orleans, LA

    Google Scholar 

  106. Zehnder AJB, Huser BA, Brock TD & Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124:1–11

    Article  CAS  Google Scholar 

  107. Zinder SH (1993) Physiological ecology of the methanogens. In: Ferry JG (Ed) Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, (pp 128–206) Chapman & Hall, New York

    Google Scholar 

  108. Zinder SH (1998) Methanogens. In: Burlage RS, Atlas R, Stahl D, Geesy G & Sayler G (Eds) Techniques in Microbial Ecology, (pp 113–136) Oxford University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fennell, D.E., Gossett, J.M. (2004). Microcosms for Site-Specific Evaluation of Enhanced Biological Reductive Dehalogenation. In: Häggblom, M.M., Bossert, I.D. (eds) Dehalogenation. Springer, Boston, MA. https://doi.org/10.1007/0-306-48011-5_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-48011-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7406-6

  • Online ISBN: 978-0-306-48011-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics