Skip to main content
Log in

Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A methanogenic bacterium, commonly seen in digested sludge and referred to as the “fat rod” or Methanobacterium soehngenii, has been enriched to a monoculture and is characterized. Cells are gramnegative, non-motile and appear as straight rods with flat ends. They form filaments which can grow to great lengths. The structure of the outer cell envelop is similar to Methanospirillum hungatii. The organism grows on a mineral salt medium with acetate as the only organic component. Acetate is the energy source, and methane is formed exclusively from the methyl group. Acetate and carbon dioxide act as sole carbon source and are assimilated in a molar ratio of about 1.9:1. The reducing equivalents necessary to build biomass from these two precursors are obtained from the total oxidation of some acetate. Hydrogen is not used for methane formation and is not needed for growth. Formate is cleaved into hydrogen and carbon dioxide. Coenzyme M was found to be present at levels of 0.35 nmol per mg of dry cells and F420 amounted to 0.55 μg per mg protein. The mean generation time was 9 days at 33°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch, W. E., Wolfe, R. S.: New approach to cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32, 781–791 (1976)

    PubMed  Google Scholar 

  • Balch, W. E., Wolfe, R. S.: Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J. Bacteriol. 137, 256–263 (1979)

    PubMed  Google Scholar 

  • Barker, H. A.: Studies upon the methane-producing bacteria. Arch. Mikrobiol, 7, 420–438 (1936)

    Google Scholar 

  • Bryant, M. P.: Methane-producing bacteria. In: Bergey's manual of determinative bacteriology, 8th ed. (R. E. Buchanan, N. E. Gibbons, eds.), pp 472–477. Baltimore: Williams and Wilkins 1974

    Google Scholar 

  • Buswell, A. M., Neave, S. L.: Laboratory studies of sludge digestion. Illinois State Water Survey, Bulletin No. 30, Urbana, Ill. (1930)

  • Doddema, H. J., Vogels, G. D.: Improved identification of methanogenic bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 36, 752–754 (1978)

    PubMed  Google Scholar 

  • Edwards, T., McBride, B. C.: New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol. 29, 540–545 (1975)

    PubMed  Google Scholar 

  • Eirich, L. D.: The structure of coenzyme F420, a novel electron carrier isolated from Methanobacterium strain M.o.H. Ph. D. thesis, University of Illinois at Urbana-Champaign (1978)

  • Eirich, L. D., Vogels, G. D., Wolfe, R. S.: Proposed structure for coenzyme F420 from Methanobacterium Biochemistry 17, 4583–4593 (1978)

    PubMed  Google Scholar 

  • Ferry, J. G., Smith, P. H., Wolfe, R. S.: Methanospirillum, a new genus of methanogenic bacteria and characterization of Methanospirillum hungatii sp. nov. Int. J. Syst. Bacteriol. 24, 465–469 (1974)

    Google Scholar 

  • Ferry, J. G., Wolfe, R. S.: Anaerobic degradation of benzoate to methane by a microbial consortium. Arch. Microbiol. 107, 33–40 (1976)

    PubMed  Google Scholar 

  • Groenewege, J.: Bakteriologische Untersuchungen über biologische Reinigung. Med. Burg. Geneesk. Dienst, Deel 1, 66–125 (1920)

    Google Scholar 

  • Gunsalus, R., Eirich, L. D., Romesser, J., Balch, W., Shapiro, S., Wolfe, R. S.: Methyl transfer and methane formation. In: Microbial production and utilization of gases (H2, CH4, CO) (H. G. Schlegel, G. Gottschalk, D. Pfennig, eds.), pp. 191–197. Göttingen: Goltze (1976)

    Google Scholar 

  • Gunsalus, R. P., Wolfe, R. S.: Stimulation of CO2 reduction to methane by methyl-coenzyme M in extracts of Methanobacterium. Biochem. Biophys. Res. Commun. 76, 790–795 (1977)

    PubMed  Google Scholar 

  • Hoppe-Seyler, F.: Über die Processe der Gährungen und ihre Beziehung zum Leben der Organismen. Pflüger's Arch. f. ges. Physiol. 12, 1–17 (1876)

    Google Scholar 

  • Hoppe-Seyler, F.: Die Methangährung der Essigsäure. Hoppe-Seyler's Z. Physiol. Chem. 11, 561–568 (1887)

    Google Scholar 

  • Horridge, G. A., Tamm, S. L.: Critical point drying for scanning electron microscopic study of ciliary motion. Science 163, 817–818 (1969)

    Google Scholar 

  • Kaspar, H. F., Wuhrmann, K.: Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl. Environ. Microbiol. 36, 1–7 (1978)

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    PubMed  Google Scholar 

  • Mah, R. A., Smith, M. R., Baresi, L.: Studies on an acetatefermenting strain of Methanosarcina. Appl. Environ. Microbiol. 35, 1174–1184 (1978)

    PubMed  Google Scholar 

  • Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Cambridge Philos. Soc. 41, 445–502 (1966)

    Google Scholar 

  • Mountfort, D. O.: Evidence for ATP synthesis driven by a proton gradient in Methanosarcina barkeri. Biochem. Biophys. Res. Comm. 85, 1346–1352 (1978)

    PubMed  Google Scholar 

  • Mylroie, R. L., Hungate, R. E.: Experiments on the methane bacteria in sludge. Can. J. Microbiol. 1, 55–64 (1954)

    PubMed  Google Scholar 

  • Pine, M. J., Barker, H. A.: Studies on the methane fermentation. XII. The pathway of hydrogen in the acetate fermentation. J. Bacteriol. 71, 644–648 (1956)

    PubMed  Google Scholar 

  • Popoff, L.: Über die Sumpfgasgährung. Pflüger's Arch. f. ges. Physiol. 10, 113–146 (1873)

    Google Scholar 

  • Pretorius, W. A.: The effect of formate on the growth of acetate utilizing methanogenic bacteria. Water Res. 6, 1213–1217 (1972)

    Article  Google Scholar 

  • Reynolds, E.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)

    Article  PubMed  Google Scholar 

  • Schnellen, Ch. G. T. P.: Onderzoekingen over de Methaangistring. Dissertation. Technische Hoogeschool Delft. Rotterdam: De Maasstad 1947

    Google Scholar 

  • Smit, J.: Die Gärungssarcinen. Eine Monographie. Pflanzen-forschung 14, 1–59 (1930)

    Google Scholar 

  • Smith, M. R., Mah, R. A.: Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36, 870–879 (1978)

    PubMed  Google Scholar 

  • Söhngen, N. L.: Sur le rôle du méthane dans la vie organique. Rec. trav. chim. 29, 238–274 (1910)

    Google Scholar 

  • Spurr, A. R.: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)

    PubMed  Google Scholar 

  • Stadtman, T. C., Barker, H. A.: Studies on the methane fermentation. IX. The origin of methane in the acetate and methanol fermentations by methanosarcina. J. Bacteriol. 61, 81–86 (1951)

    PubMed  Google Scholar 

  • Tzeng, S. F., Wolfe, R. S., Bryant, M. P.: Factor 420-dependent pyridine nucleotide-linked hydrogenase system of Methanobacterium ruminantium. J. Bacteriol. 121, 184–191 (1975)

    PubMed  Google Scholar 

  • van den Berg, L., Patel, G. B., Clark, D. S., Lentz, C. P.: Factors affecting rate of methane formation from acetic acid by enriched methanogenic cultures. Can. J. Microbiol. 22, 1312–1319 (1976)

    PubMed  Google Scholar 

  • Wellinger, A.: Untersuchungen über den Stoffwechsel des Methanbakteriums Stamm AZ. Ph. D. thesis ETH No. 5878. Zürich: Juris Druck and Verlag 1977

    Google Scholar 

  • Wolin, E. A., Wolin, M. J., Wolfe, R. S.: Formation of methane by bacterial extracts. J. Biol. Chem. 238, 2882–2886 (1963)

    PubMed  Google Scholar 

  • Zehnder, A. J. B., Wuhrmann, K.: Physiology of a Methanobacterium strain AZ. Arch. Microbiol. 111, 199–205 (1977)

    Google Scholar 

  • Zehnder, A. J. B., Brock, T. D.: Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137, 420–432 (1979)

    PubMed  Google Scholar 

  • Zehnder, A. J. B., Huser, B., Brock, T. D.: Measuring radioactive methane with liquid scintillation counter. Appl. Environ. Microbiol. 37, 897–899 (1979)

    Google Scholar 

  • Zeikus, J. G., Bowen, V. G.: Fine structure of Methanospirillum hungatii. J. Bacteriol. 121, 373–380 (1975)

    PubMed  Google Scholar 

  • Zeikus, J. G., Winfrey, M. R.: Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ. Microbiol. 31, 99–107 (1976)

    PubMed  Google Scholar 

  • Zhilina, T. N.: The fine structure of Methanosarcina. Mikrobiologiya 40, 674–680 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zehnder, A.J.B., Huser, B.A., Brock, T.D. et al. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124, 1–11 (1980). https://doi.org/10.1007/BF00407022

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00407022

Key words

Navigation