Skip to main content

Spatial and Temporal Discontinuities of Biological Processes in Pelagic Surface Waters

  • Chapter
Toward a Theory on Biological-Physical Interactions in the World Ocean

Part of the book series: NATO ASI Series ((ASIC,volume 239))

Abstract

The classical paradigm of an unproductive, nutrient-poor pelagic zone where primary production is fueled almost exclusively by nutrient regeneration processes, appears at odds with the contemporary view that new primary production, supported by a stoichiometric input of oxidized nutrients into the euphotic zone, is considerably higher than previously thought. One way to accomodate both scenarios is to invoke the two layer concept in which the bulk of new primary production occurs at or near the base of the euphotic zone in response to pulsed injections of NO3 - and PO4 3-. Productivity in the upper euphotic zone where nutrients and biomass are trapped would be regulated almost exclusively by regenerative and degradative processes that occur within the microbial food loop. Since the microbial food loop which consists of a tightly-knit assemblage of phototrophic and heterotrophic nanno- and picoplankton persists throughout the euphotic zone, most of the energy and carbon processed by these small microbes would be lost through respiration and thus would not contribute to new production exiting to deeper waters. This raises the perplexing question of how biological processes are coupled to the input of new nutrients which, in turn, is controlled by physical events that occur on greatly varying temporal and spatial scales. Possibly, short-lived, local mixing events provide the right combination of light and new nutrients to allow rapid and undetected bursts of growth of larger phytoplankton species, in effect, creating ephemeral eutrophication zones. The resulting food chain may be short and simple so that newly fixed carbon can exit the euphotic zone rapidly while leaving behind an oxygen signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A.L. and Y. Cohen: 1987, ‘Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets’, Science 235, 689–691.

    Article  ADS  Google Scholar 

  • Alldredge, A.L. and M.W. Silver: 1982, ‘Abundance and production rates of floating diatom mats (Rhizosolenia castacanei and R. imbricata var. shrubsolei) in the Eastern Pacific Ocean’, Mar. Biol. 66, 83–88.

    Article  Google Scholar 

  • Azam, F.T., T. Fenchel, J.G. Field, L.A. Meyer-Reil, and F. Thingstad: 1983, ‘The ecological role of water-column microbes in the sea’, Mar. Ecol. Prog. Ser. 10, 257–263.

    Article  Google Scholar 

  • Belyayeva, T.V.: 1970, ‘Abundance of Ethmodíscus in Pacific plankton’, Oceanology 10, 672–675.

    Google Scholar 

  • Belyayeva, T.V.: 1972, ‘Distribution of large diatoms in the southeastern Pacific’, Oceanology 12, 400–407.

    Google Scholar 

  • Bienfang, P.K.: 1985, ‘Size structure and sinking rates of various microparticulate constituents in oligotrophic Hawaiian waters’, Mar. Ecol. Prog. Ser. 23, 143–151.

    Article  Google Scholar 

  • Billett, D.S.M., R.S. Lampitt, A.L. Rice, and R.F.C. Mantoura: 1983, ‘Seasonal sedimentation of phytoplankton to the deep-sea benthos’, Nature 302, 520–522.

    Article  ADS  Google Scholar 

  • Brand, L.E. and R.R.L. Guillard: 1981, ‘The effects of continuous light and light intensity on the reproduction rates of twenty-two species of marine phytoplankton’, J. exp. mar. Biol. Ecol. 50, 119–132.

    Article  Google Scholar 

  • Cadee, G.C.: 1985, ‘Macroaggregates of Emiliana huxleyi in sediment traps’, Mar. Ecol. Prog. Ser. 24, 193–196.

    Article  Google Scholar 

  • Caron, D.A., P.G. Davis, L.P. Madin, andJ. McN. Sieburth: 1982, ‘Heterotrophic bacteria and bacterivorous protozoa in oceanic macroparticulates’, Science 218, 795–797.

    Article  ADS  Google Scholar 

  • Caron, D.A., J.C. Goldman, O. K. Andersen, and M.R. Dennett: 1985, ‘Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling’, Mar. Ecol. Prog. Ser. 24, 243–254.

    Article  Google Scholar 

  • Carpenter, E.J., G.R. Harbison, L.P. Madin, N.R. Swanberg, D.C. Biggs, E.M. Hulburt, V.L. McAlister, and J.J. McCarthy: 1977, Rhizosolenia mats, Limnol. Oceanogr. 22, 739–741.

    Article  Google Scholar 

  • Chan, A.T.: 1978, ‘Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. I. Growth under continuous light’, J. Phycol. 14, 396–402.

    Article  Google Scholar 

  • Clemons, M.J. and C.B. Miller: 1984, ‘Blooms of large diatoms in the oceanic, subarctic Pacific’, Deep-Sea Res. 31, 85–95.

    Article  Google Scholar 

  • Conover, R.J.: 1982, ‘Interrelations between microzooplankton and other plankton organisms’, Ann. Inst. oceanogr. Paris 58, 31–46.

    Google Scholar 

  • Currie, D.J.: 1984a, ‘Microscale nutrient patches: do they matter to the phytoplankton?’, Limnol. Oceanogr. 29, 211–214.

    Article  Google Scholar 

  • Currie, D.J.: 1984b, ‘Phytoplankton growth and the microscales nutrient patch hypothesis’, J. Plankton. Res. 6, 591–599.

    Article  Google Scholar 

  • Deuser, W.G.: 1986, ‘Seasonal and interannual variations in deep-water particle fluxes in the Sargasso Sea and their relation to surface hydrography’, Deep-Sea Res. 33, 225–246.

    Article  Google Scholar 

  • Deuser, W.G.: in press, ‘Variability of hydrography and particle flux: transient and long-term relationships’, Mitt. Geol. -Palaent. Inst. Univ. Hamburg 62.

    Google Scholar 

  • Deuser, W.G. and E.H. Ross: 1980, ‘Seasonal change in the flux of organic carbon to the deep Sargasso Sea’, Nature 283, 364–365.

    Article  ADS  Google Scholar 

  • Deuser, W.G., E.H. Ross, and R.F. Anderson: 1981, ‘Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean’, Deep-Sea Res. 28, 495–505.

    Article  Google Scholar 

  • Dugdale, R.C. and J.J. Goering: 1967, ‘Uptake of new and regenerated forms of nitrogen in primary production’, Limnol. Oceanogr. 12, 196–206.

    Article  Google Scholar 

  • Eppley, R.W.: 1972, ‘Temperature and phytoplankton growth in the sea’, Fish. Bull. 70, 1063–1085.

    Google Scholar 

  • Eppley, R.W. and B.J. Peterson: 1979, ‘Particulate organic matter flux and planktonic new production in the deep ocean’, Nature 282, 677–680.

    Article  ADS  Google Scholar 

  • Eppley, R.W., P. Koeller, and G.T. Wallace Jr.: 1978, ‘Stirring influences the phytoplankton species composition within enclosed columns of coastal sea water’, J. exp. mar. Biol. Ecol. 32, 219– 239.

    Article  Google Scholar 

  • Eppley, R.W., E.H. Renger, and W.G. Harrison: 1979, ‘Nitrate and phytoplankton production in southern California coastal waters’, Limnol. Oceanogr. 24, 483–494.

    Article  Google Scholar 

  • Fenchel, T.: 1982, ‘Ecology of heterotrophic microflagellates. II. Bioenergetics and growth’, Mar. Ecol. Prog. Ser. 8, 225–231.

    Article  Google Scholar 

  • Glibert, P.M.: 1982, ‘Regional studies of daily, seasonal and size fraction variability in ammonium remineralization’, Mar. Biol. 70, 209–222.

    Article  Google Scholar 

  • Glibert, P.M. and J.J. McCarthy: 1984, ‘Uptake and assimilation of ammonium and nitrate by phytoplankton: indices of nutritional status for natural populations’, J. Plankton Res. 6, 677–697.

    Article  Google Scholar 

  • Glibert, P.M., J.C. Goldman, and E.J. Carpenter: 1982, ‘Seasonal variations in the utilization of ammonium and nitrate by phytoplankton in Vineyard Sound, Massachusetts, USA’, Mar. Biol. 70, 237–249.

    Article  Google Scholar 

  • Glover, H.E., A.E. Smith, and L. Shapiro: 1985, ‘Diurnal variations in photosynthetic rates: comparison of ultraplankton with a larger size fraction’, J. Plankton Res. 7, 519–535.

    Article  Google Scholar 

  • Goldman, J.C: 1980, ‘Physiological processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology’, in P.G. Falkowski (ed.), Primary productivity in the sea ,Plenum Press, N.Y., pp. 179–194.

    Google Scholar 

  • Goldman, J.C: 1984a, ‘Oceanic nutrient cycles’, in M.J. Fasham (ed.), Flows of energy and materials in marine ecosystems: theory and practice ,Plenum press, N.Y., pp. 137–170.

    Google Scholar 

  • Goldman, J.C.: 1984b, ‘Conceptual role for microaggregates in pelagic surface waters’, Bull. Mar. Sci. 35, 462–476.

    ADS  Google Scholar 

  • Goldman, J.C: 1986, ‘On phytoplankton growth rates and particulate C:N:P ratios at low light’, Limnol. Oceanogr. 31, 47–55.

    Article  Google Scholar 

  • Goldman, J.C. and D.A. Caron: 1985, ‘Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain’, Deep-Sea Res. 32, 899–915.

    Article  Google Scholar 

  • Goldman, J.C., J.J. McCarthy, and D.G. Peavey: 1979, ‘Growth rate influence on the chemical composition of phytoplankton in oceanic waters’, Nature 279, 210–215.

    Article  ADS  Google Scholar 

  • Goldman, J.C., D.A. Caron, O.K. Andersen, and M.R. Dennett: 1985, ‘Nutrient cycling in a microflagellate food chains: I. Nitrogen dynamics’, Mar. Ecol. Prog. Ser. 24, 231–242.

    Article  Google Scholar 

  • Grenny, W.J., D.A. Bella, and H.C Curl: 1973, ‘A theoretical approach to interspecific competition in phytoplankton communities’, Am. Nat. 107, 405–425.

    Article  Google Scholar 

  • Guillard, R.R.L. and P. Kilham: 1977, ‘The ecology of marine planktonic diatoms’, in D. Werner (ed.), The biology of diatoms, University of California Press, Berkeley, pp. 372–469.

    Google Scholar 

  • Harrison, W.G., D. Douglas, P. Falkowski, G. Rowe, and J. Vidal: 1983, ‘Summer nutrient dynamics of the middle Atlantic Bight: nitrogen uptake and regeneration’, J. Plankton Res. 5, 539–556.

    Article  Google Scholar 

  • Harrison, W.G., T. Platt, and M.R. Lewis: 1987, ‘f-Ratio and its relationship to ambient nitrate concentration in coastal waters’, J. Plankton Res. 9, 235–248.

    Article  Google Scholar 

  • Honjo, S.: 1982, ‘Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin’, Science 218, 883–884.

    Article  ADS  Google Scholar 

  • Hulburt, E.M., Ryther, J.H., and R.R.L. Guillard: 1960, ‘The phytoplankton of the Sargasso Sea off Bermuda’, J. Cons. perm. int. Explor. Mer. 25, 115–127.

    Google Scholar 

  • Iturriaga, R. and B.G. Mitchell: 1986, ‘Chroococcoid cynaobacteria: a significant component in the food web dynamics of the open ocean’, Mar. Ecol. Prog. Ser. 28, 291–297.

    Article  Google Scholar 

  • Jackson, G.A.: 1980, ‘Phytoplankton growth and Zooplankton grazing in oligotrophic oceans’, Nature 284, 439–441.

    Article  ADS  Google Scholar 

  • Jenkins, W.J.: 1982, ‘Oxygen utilization rates in the North Atlantic Subtropical Gyre and primary production in oligotrophic waters’, Nature 300, 246–248.

    Article  ADS  Google Scholar 

  • Jenkins, W.J. and J.C. Goldman: 1985, ‘Seasonal oxygen cycling and primary production in the Sargasso Sea’, J. Mar. Res. 43, 465– 491.

    Article  Google Scholar 

  • Johnson, K.M., C.M. Burney, and J. McN. Sieburth: 1981, ‘Enigmatic marine ecosystem metabolism measured by direct CO2 and O2 flux in conjunction with DOC release and uptake’. Mar. Biol. 65. 49–60.

    Article  Google Scholar 

  • Johnson, P.W. and J. McN. Sieburth: 1979, ‘Chroococcoid cynaobacteria in the sea; A ubiquitous and diverse phototropic biomass’, Limnol. Oceanogr. 24, 928–935.

    Article  Google Scholar 

  • Jorgensen, C.B.: 1984, ‘Effect of grazing: metazoan suspension feeders’, in J.E. Hobbie and P.J.leB. Williams (eds.), Heterotrophic activity in the sea ,Plenum Press, N.Y., pp. 445– 464.

    Google Scholar 

  • Knauer, G.A., J.H. Martin, and D.M. Karl: 1984, ‘Further evidence of a two-layered euphotic zone in oceanic waters’, EOS, Trans. Am. Geophys. Soc. 65, 923 (abstr.).

    Google Scholar 

  • Lampitt, R.S.: 1985, ‘Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension’, Deep-Sea Res. 32, 885–897.

    Article  Google Scholar 

  • Laws, E.A.: 1975, ‘The importance of respiration losses in controlling the size distribution of marine phytoplankton’, Ecology 56, 419–426.

    Article  Google Scholar 

  • Li, WK.W., D.V. Subba Rao, W.G. Harrison, J.C. Smith, J.J. Cullen, B. Irwin, and T. Platt: 1983, ‘Autotrophic picoplankton in the tropical ocean’, Science 219, 292–294.

    Article  ADS  Google Scholar 

  • Malone, T.C.: 1971, ‘The relative importance of nanoplankton and netplankton as primary producers in tropical oceanic and neritic phytoplankton communities’, Limnol. Oceanogr. 16, 633–639.

    Article  Google Scholar 

  • Margalef, R.: 1978, ‘Life-forms of phytoplankton as survival alternatives in an unstable environment’, Oceanologica Acta 1, 493–509.

    Google Scholar 

  • McCarthy, J.J. and J.C. Goldman: 1979, ‘Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters’, Science 203, 670–672.

    Article  ADS  Google Scholar 

  • McCave, I.N.: 1984, ‘Size spectra and aggregation of suspended particles in the deep ocean’, Deep-Sea Res. 31, 329–352.

    Article  Google Scholar 

  • McHugh, J.L.: 1954, ‘Distribution and abundance of the diatom Ethmodiscus rex off the west coast of North America’, Deep-Sea Res. 1, 216–223.

    Article  Google Scholar 

  • Murphy, L.S. and E.M. Haugen: 1985, ‘The distribution and abundance of phototrophic ultraplankton in the North Atlantic’, Limnol. Oceanogr. 30, 47–58.

    Article  Google Scholar 

  • Platt, T.: 1984, ‘Primary productivity in the central North Pacific: comparison of oxygen and carbon fluxes’, Deep-Sea Res. 31, 1311– 1319.

    Article  Google Scholar 

  • Platt, T. and W.G. Harrison: 1985, ‘Biogenic fluxes of carbon and oxygen in the ocean’, Nature 318, 55–58.

    Article  ADS  Google Scholar 

  • Platt, T. and W.G. Harrison: 1986, ‘Reconciliation of carbon and oxygen fluxes in the upper ocean’, Deep-Sea Res. 33, 273–276.

    Article  Google Scholar 

  • Platt, T., D.V. Subba Rao, J.C. Smith, W.K. Li, B. Irwin, E.P.W. Horne, and D.D. Sameoto: 1983, ‘Photosynthetically-competent phytoplankton from the aphotic zone of the deep ocean’, Mar. Ecol. Prog. Ser. 10, 105–110.

    Article  Google Scholar 

  • Pomeroy, L.R.: 1974, ‘The ocean’s food web, a changing paradigm’, BioScience 24, 499–504.

    Article  Google Scholar 

  • Riley, G.A.: 1957, ‘Phytoplankton of the North Central Sargasso Sea’, Limnol. Oceanogr. 2, 252–269.

    Google Scholar 

  • Riley, G.A.: 1970, ‘Particulate organic matter in sea water’, Adv. Mar. Biol. 8, 1–118.

    Article  Google Scholar 

  • Rice, A.L., D.S.M. Billett, J. Fry, A.W.G. John, R.S. Lampitt, R.F.C. Mantoura, and R.J. Morris: 1986, ‘Seasonal deposition of phytodetritus to the deep-sea floor’, Proc. Roy. Soc. Endinburgh 88B, 265–279.

    Google Scholar 

  • Ryther, J.H.: 1969, Photosynthesis and fish production in the sea’, Science 166, 72–76.

    Article  ADS  Google Scholar 

  • Semina, H.J.: 1972, ‘The size of phytoplankton cells in the Pacific Ocean’, Int. Revue ges. Hydrobiol. 57, 177–205.

    Article  Google Scholar 

  • Schulenberger, E. and J.L. Reid: 1981, ‘Oxygen saturation and carbon uptake near 28°N, 155°W’, Deep-Sea Res. 33, 267–271.

    Google Scholar 

  • Shanks, A.L., and J.D. Trent: 1979, ‘Marine snow: microscale nutrient patches’, Limnol. Oceanogr. 24, 850–854.

    Article  Google Scholar 

  • Sherr, E.B., B.F. Sheer, and G. Paffenhofer: 1986, ‘Phagotrophic protozoa as food for metazoans: a “missing” trophic link in marine pelagic food webs’, Mar. Microb. Food Webs 1, 61–80.

    Google Scholar 

  • Sherr, B.F., E.B. Sherr, and T. Berman: 1983, ‘Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria’, Appl. Environ. Mícrobiol. 45, 1196–1201.

    Google Scholar 

  • Sieburth, J. McN.: 1984, ‘Protozoan bacterivory in pelagic marine waters’, in J.E. Hobbie and P.J.leB. Williams (eds.), Heterotrophic activity in the sea ,Plenum Press, N.Y., pp. 405– 444.

    Google Scholar 

  • Sieburth, J. McN., V. Smetacek, and J. Lenz: 1978, ‘Pelagic ecosystem structure: heterotrophic compartments and their relationship to plankton size fractions’, Limnol. Oceanogr. 23, 1256–1263.

    Article  Google Scholar 

  • Silver, M.W., A.L. Shanks, and J.D. Trent: 1978, ‘Marine snow: microplankton habitat and source of small-scale patchiness in pelagic populations’, Science 201, 371–373.

    Article  ADS  Google Scholar 

  • Silver, M.W., M.M. Gowing, and P. Davoll: 1986, ‘The association of photosynthetic picoplankton and ultraplankton with pelagic detritus through the water column (0–2000 m), in T. Platt and W.K.W. Li (eds.), Photosynthetic picoplankton, Can. Bull. Aquat. Sci. 214, pp. 311–341.

    Google Scholar 

  • Smayda, T.J.: 1970, ‘The suspension and sinking of phytoplankton in the sea’, Oceanogr. Mar. Bíol. Ann. Rev. 8, 353–414.

    Google Scholar 

  • Smayda, T.J.: 1971, ‘Normal and accelerated sinking of phytoplankton in the sea’, Mar. Geol. 11, 105–122.

    Article  Google Scholar 

  • Smayda, T.J.: 1980, ‘Phytoplankton species succession’, in I. Morris (ed.), The physiological ecology of phytoplankton ,University of California Press, Berkeley, pp. 493–570.

    Google Scholar 

  • Smetacek, V.S.: 1985, ‘Role of sinking in diatom life-history cycles: ecological, evoluntionary, and geoloical significance’, Mar. Biol. 84, 239–251.

    Article  Google Scholar 

  • Steele, J.H. and B.W. Frost: 1977, ‘The structure of plankton communities’, Phil. Trans Soc. Lond. B 280, 485–534.

    Article  ADS  Google Scholar 

  • Strathmann, R.R.: 1967, ‘Estimating the organic carbon content of phytoplankton from cell volume or plasma volume’, Limnol. Oceanogr. 12, 411–418.

    Article  Google Scholar 

  • Swift, E., M. Stuart, and V. Meunier: 1976, ‘The in situ growth rates of some deep-living dinoflagellates: Pyrocystis fusiformis and Pyrocystis noctiluca’, Limnol. Oceanogr. 21, 418–426.

    Article  Google Scholar 

  • Takahashi, K.: 1986, ‘Seasonal fluxes of pelagic diatoms in the subarctic Pacific, 1982–1983’, Deep-Sea Res. 33, 1225–1251.

    Article  Google Scholar 

  • Takahashi, M. and P.K. Bienfang: 1983, ‘Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters’, Mar. Biol. 76, 203–211.

    Article  Google Scholar 

  • Trent, J.D., A.L. Shanks, and M.W. Silver: 1978, ‘In situ laboratory measurments on macroscopic aggregates in Monterey Bay, California’, Limnol. Oceanogr. 23, 626–635.

    Article  Google Scholar 

  • Venrick, E.L.: 1974, ‘The distribution and significance of Richelia intracellularia Schmidt in the North Pacific Central Gyre’, Limnol. Oceanogr. 19, 437–445.

    Article  Google Scholar 

  • Waterbury, J.B., S.W. Watson, R.R.L. Guillard, and L.E. Brand: 1979, ‘Widespread occurance of a unicellular, marine, planktonic, cyanobacterium’, Nature 277, 293–294.

    Article  ADS  Google Scholar 

  • Waterbury, J.B., S.W. Watson, F.W. Valois, and D.G. Franks: 1986, ‘Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus’, in T. Platt and W.K.W. Li (eds.), Photosynthetic picoplankton. Can. Bull. Fish. Aquat. Sci. 214, pp. 71–120.

    Google Scholar 

  • Williams, P.J. leB. and L.R. Muir: 1984, ‘Diffusion as a constraint on the biological importance of microzones in the sea’, in J.C.J. Nihoul (ed.), Ecohydrodynamics ,Elsevier Publishing Co., Amsterdam, pp.209–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Goldman, J.C. (1988). Spatial and Temporal Discontinuities of Biological Processes in Pelagic Surface Waters. In: Rothschild, B.J. (eds) Toward a Theory on Biological-Physical Interactions in the World Ocean. NATO ASI Series, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3023-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3023-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7859-7

  • Online ISBN: 978-94-009-3023-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics