Skip to main content

Host-plant relationships of lycaenid butterflies: large-scale patterns, interactions with plant chemistry, and mutualism with ants

  • Chapter
Proceedings of the 9th International Symposium on Insect-Plant Relationships

Part of the book series: Series Entomologica ((SENT,volume 53))

  • 416 Accesses

Abstract

The Lycaenidae are the second-largest family of butterflies. From host-plant data collated for more than 1200 species worldwide, large-scale taxonomic, geographical and ecological patterns emerge which suggest that phytochemical similarities and barriers, coupled with phylogenetic conservatism and constraints are key factors governing host-plant use. More than two thirds of the lycaenid species are restricted to one plant family or genus. Affiliations with ‘toxic’ plants are rare in the Lycaenidae, and excretion rather than sequestration of plant toxins appears to be their usual way of detoxifying host-plant compounds. Flavonoids are frequently sequestered by lycaenid larvae and are subsequently concentrated as pigments in the adults’ wings, where they might play a role in visual communication. Mutualistic associations with ants occur in the larvae of more than 50% of the extant Lycaenidae species. Because of a conflict between the nutrient demands of the larvae and the proportion of plant-derived resources allocated to maintain the mutualism with ants, variation in resource quality often translates into variation of mutualistic capacities of the caterpillars, in particular under nutrient stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackery, P. R., 1988. Host plants and classification: a review of nymphalid butterflies. Biological Journal of the Linnean Society 33: 95–203.

    Article  Google Scholar 

  • Bannister, P., 1989. Nitrogen concentration and mimicry in some New Zealand mistletoes. Oecologia 79: 128–132.

    Article  Google Scholar 

  • Baylis, M. & N. E. Pierce, 1991. The effect of host plant quality on the survival of larvae and oviposition by adults of an ant-tended lycaenid butterfly, Jalmenus evagoras. Ecological Entomology 16: 1–9.

    Article  Google Scholar 

  • Baylis, M. & N. E. Pierce, 1992. Lack of compensation by final instar larvae of the myrmecophilous lycaenid butterfly, Jalmenus evagoras, for the loss of nutrients to ants. Physiological Entomology 17: 107–114.

    Google Scholar 

  • Baylis, M. & N. E. Pierce, 1993. The effects of ant mutualism on the foraging and diet of lycaenid caterpillars. In: N. E. Stamp & T. M. Casey (eds), Caterpillars — Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York/London: 404–421.

    Google Scholar 

  • Boppré, M., 1990. Lepidoptera and pyrrolizidine alkaloids. Exemplification of complexity in chemical ecology. Journal of Chemical Ecology 16: 165–185.

    Article  Google Scholar 

  • Bowers, M. D. & S. Farley, 1990. The behaviour of grey jays, Perisoreus canadensis, towards palatable and unpalatable Lepi-doptera. Animal Behaviour 39: 699–705.

    Article  Google Scholar 

  • Bowers, M. D. & Z. Larin, 1989. Acquired chemical defence in the lycaenid butterfly, Eumaeus atala. Journal of Chemical Ecology 15: 1133–1146.

    Article  CAS  Google Scholar 

  • Burghardt, F. & K. Fiedler, 1996. The influence of diet on growth and secretion behaviour of myrmecophilous Polyommatus icarus caterpillars (Lepidoptera: Lycaenidae). Ecological Entomology 21 (in press).

    Google Scholar 

  • Burghardt, F., K. Fiedler & P. Proksch, 1995. Wirtspflanzenabhängige Flavonoidmuster im Bläuling Polyommatus icarus. Verhandlungen der Deutschen Zoologischen Gesellschaft 88.1: 256.

    Google Scholar 

  • Cottrell, C. B., 1984. Aphytophagy in butterflies: its relationship to myrmecophily. Zoological Journal of the Linnean Society 79: 1–57.

    Article  Google Scholar 

  • Cushman, J. H., V. K. Rashbrook & A. J. Beattie, 1994. Assessing benefits to both participants in alycaenid-ant association. Ecology 75: 1031–1041.

    Article  Google Scholar 

  • Ehleringer, J. R., I. Ullmann, O. L. Lange, G. D. Farquhar, I. R. Cowan, E.-D. Schulze & H. Ziegler, 1986. Mistletoes: a hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70: 243–247.

    Google Scholar 

  • Ehrlich, P. R. & P. H. Raven, 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586–608.

    Article  Google Scholar 

  • Eliot, J. N., 1973. The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. Bulletin of the British Museum (Natural History) Entomology 28: 371–505.

    Google Scholar 

  • Erwin, T. L., 1982. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopterist’s Bulletin 36: 74–75.

    Google Scholar 

  • Feeny, P. P., 1976. Plant apparency and chemical defence. Recent Advances in Phytochemistry 10: 1–40.

    CAS  Google Scholar 

  • Feeny, P., 1991. Chemical constraints on the evolution of swallowtail butterflies. In: P. W. Price, T. M. Lewinsohn, G. W. Fernandes & W. W. Benson (eds), Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. John Wiley, New York: 315–340.

    Google Scholar 

  • Feltwell, J. S. & L. R. G. Valadon, 1970. Plant pigments identified in the common blue butterfly. Nature 255: 969.

    Article  Google Scholar 

  • Fiedler, K., 1990. Effects of larval diet on the myrmecophilous qualities of Polyommatus icarus caterpillars (Lepidoptera: Lycaenidae). Oecologia 83: 284–287.

    Article  Google Scholar 

  • Fiedler, K., 1991. Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonner Zoologische Monographien 31: 1–210.

    Google Scholar 

  • Fiedler, K., 1994. Lycaenid butterflies and plants: is myrmecophily associated with amplified host plant diversity? Ecological Entomology 19: 79–82.

    Article  Google Scholar 

  • Fiedler, K., 1995a. Lycaenid butterflies and plants: is myrmecophily associated with particular host plant preferences? Ethology Ecology and Evolution 7: 107–132.

    Article  Google Scholar 

  • Fiedler, K., 1995b. Lycaenid butterflies and plants: Host plant relationships, tropical versus temperate. Ecotropica 1: 51–58.

    Google Scholar 

  • Fiedler, K. & B. Hölldobler, 1992. Ants and Polyommatus icarus immatures (Lycaenidae) — sex-related developmental benefits and costs of ant attendance. Oecologia 91: 468–473.

    Article  Google Scholar 

  • Fiedler, K. & V Hummel, 1996. Myrmecophily in the brown argus butterfly, Aricia agestis (Lepidoptera: Lycaenidae): Effects of larval age, ant number and persistence of contacts with ants. Zoology 99 (in press).

    Google Scholar 

  • Fiedler, K. & C. Saam, 1994. Does ant-attendance influence development in 5 European Lycaenidae butterfly species? (Lepidoptera). Nota Lepidopterologica 17: 5–24.

    Google Scholar 

  • Fiedler, K. & C. Saam, 1995. Ants benefit from attending facultatively myrmecophilous Lycaenidae caterpillars: evidence from a survival study. Oecologia 104: 316–322.

    Article  Google Scholar 

  • Fiedler, K., B. Hölldobler & P. Seufert, 1996. Butterflies and ants: the communicative domain. Experientia 52: 14–24.

    Article  CAS  Google Scholar 

  • Fiedler, K., E. Krug & P. Proksch, 1993. Complete elimination of host plant quinolizidine alkaloids by larvae of a polyphagous lycaenid butterfly, Callophrys rubi. Oecologia 94: 441–445.

    Article  Google Scholar 

  • Fiedler, K., P. Seufert, N. E. Pierce, J. G. Pearson & H.-T. Baumgarten, 1995. Exploitation of lycaenid-ant mutualisms by bra-conid parasitoids. Journal of Research on the Lepidoptera 31: 153–168.

    Google Scholar 

  • Janzen, D. H., 1993. Caterpillar seasonality in a Costa Rican dry forest. In: N. E. Stamp & T. M. Casey (eds), Caterpillars — Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York/London: 448–477.

    Google Scholar 

  • Leimar, O. & A. Axén, 1993. Strategic behavior in an interspecific mutualism: interactions between lycaenid larvae and ants. Animal Behaviour 46: 1177–1182.

    Article  Google Scholar 

  • Nash, D. R., 1989. Cost-benefit analysis of a mutualism between lycaenid butterflies and ants. PhD thesis, Oxford University.

    Google Scholar 

  • Noë, R. & P. Hammerstein, 1994. Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology and Sociobiology 35: 1–11.

    Article  Google Scholar 

  • Pierce, N. E., 1985. Lycaenid butterflies and ants: selection for nitrogen-fixing and other protein-rich food plants. American Naturalist 125: 888–895.

    Article  Google Scholar 

  • Pierce, N. E., 1987. The evolution and biogeography of associations between lycaenid butterflies and ants. Oxford Surveys in Evolutionary Biology 4: 89–116.

    Google Scholar 

  • Pierce, N. E. & S. Easteal, 1986. The selective advantage of attendant ants for the larvae of a lycaenid butterfly, Glaucopsyche lygdamus. Journal of Animal Ecology 55: 451–462.

    Article  Google Scholar 

  • Pierce, N. E. & M. A. Elgar, 1985. The influence of ants on host plant selection by Jalmenus evagoras, a myrmecophilous lycaenid butterfly. Behavioral Ecology and Sociobiology 16: 209–222.

    Article  Google Scholar 

  • Pierce, N. E., R. L. Kitching, R. C. Buckley, M. F. J. Taylor & K. F. Benbow, 1987. The costs and benefits of cooperation between the Australian lycaenid butterfly, Jalmenus evagoras, and its attendant ants. Behavioral Ecology and Sociobiology 21: 237–248.

    Article  Google Scholar 

  • Renwick, J. A. A. & F. S. Chew, 1994. Oviposition behavior in the Lepidoptera. Annual Review of Entomology 39: 377–400.

    Article  Google Scholar 

  • Rhoades, D. F. & R. G. Cates, 1976. Toward a general theory of plant antiherbivore chemistry. Recent Advances in Phytochemistry 10: 168–213.

    CAS  Google Scholar 

  • Robbins, R. K., 1988. Comparative morphology of the butterfly foreleg coxa and trochanter (Lepidoptera) and its systematic implications. Proceedings of the Entomological Society of Washington 90: 133–154.

    Google Scholar 

  • Scriber, J. M., 1995. Overview of swallowtail butterflies: taxonom-ic and distributional latitude. In: J. M. Scriber, Y. Tsubaki & R. C. Lederhouse (eds), Swallowtail Butterflies — Their Ecology and Evolutionary Biology. Scientific Publishers, Gainesville: 3–8.

    Google Scholar 

  • Shields, O., 1989. World numbers of butterflies. Journal of the Lepidopterists’ Society 43: 178–183.

    Google Scholar 

  • Slansky, F., 1993. Nutritional ecology: the fundamental quest for nutrients. In: N. E. Stamp & T. M. Casey (eds), Caterpillars-Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York/London: 29–91.

    Google Scholar 

  • Thompson, J. N., 1994. The Revolutionary Process. University of Chicago Press, Chicago.

    Google Scholar 

  • Thompson, V., 1994. Spittlebug indicators of nitrogen-fixing plants. Ecological Entomology 19: 391–398.

    Article  Google Scholar 

  • Vane-Wright, R. I., 1978. Ecological and behavioural origins of diversity in butterflies. In: L. A. Mound & N. Waloff (eds), The Diversity of Insect Faunas. Symposia of the Royal Entomological Society of London 9: 56–70.

    Google Scholar 

  • Wagner, D., 1993. Species-specific effects of tending ants on the development of lycaenid butterfly larvae. Oecologia 96: 276–281.

    Article  Google Scholar 

  • Wiesen, B., E. Krug, K. Fiedler, V. Wray & P. Proksch, 1994. Sequestration of host plant-derived flavonoids by lycaenid butterfly Polyommatus icarus. Journal of Chemical Ecology 20: 2523–2538.

    Article  CAS  Google Scholar 

  • Wilson, A., 1987. Flavonoid pigments in chalkhill blue (Lysandra coridon Poda) and other lycaenid butterflies. Journal of Chemical Ecology 13: 473–493.

    Article  CAS  Google Scholar 

  • Wilson, K. G. & R. E. Stinner, 1984. A potential influence of rhizobium activity on the availability of nitrogen to legume herbivores. Oecologia 61: 337–341.

    Article  Google Scholar 

  • Ziegler, A., 1995. Untersuchungen zur Aufnahme von Flavonoiden durch den Bläuling Aricia agestis aus seiner Wirtspflanze Geranium molle. Unpublished thesis, Würzburg University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fiedler, K. (1996). Host-plant relationships of lycaenid butterflies: large-scale patterns, interactions with plant chemistry, and mutualism with ants. In: Städler, E., Rowell-Rahier, M., Bauer, R. (eds) Proceedings of the 9th International Symposium on Insect-Plant Relationships. Series Entomologica, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1720-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1720-0_59

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7270-0

  • Online ISBN: 978-94-009-1720-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics