Skip to main content

Horizontal Gene Transfer in Eukaryotes: Fungi-to-Plant and Plant-to-Plant Transfers of Organellar DNA

  • Chapter
  • First Online:
Genomics of Chloroplasts and Mitochondria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 35))

Summary

This review focuses on horizontal gene transfer (HGT) involving bacteria, fungi, and plants (Viridiplantae). It highlights in particular the persistent challenge of recognizing HGT, which requires a combination of methods from bioinformatics, phylogenetics, and molecular biology. Non-phylogenetic methods rely on compositional structure, such as G/C content, dinucleotide frequencies, codon usage biases, or co-conversion tracts, while phylogenetic methods rely on incongruence among gene trees, one of which is taken to represent the true organismal phylogeny. All methods are handicapped by short sequence lengths with limited or highly uneven substitution signal; the statistical problems of working with taxon-rich alignments of such sequences include low support for inferred relationships, and difficult orthology assessment. Plant-to-plant HGT is known from two dozen mitochondrial genes and species of phylogenetically and geographically widely separated ferns, gymnosperms, and angiosperms, with seven cases involving parasitic plants. Only one nuclear HGT has come to light, and extremely few fungi-to-plant transfers. Plant mitochondrial genomes, especially in tracheophytes, are prone to take up foreign DNA, but evolutionary consequences of this are still unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BLAST:

Basic local alignment search tool;

cpDNA;:

Plastid DNA;

DNA:

Deoxyribonucleic acid;

EST:

Expressed sequence tag;

HGT:

Horizontal gene transfer;

HTT:

Horizontal transposon transfer;

mt(DNA):

Mitochondrial (DNA);

MULE:

Mu-like elements (Mu is mutator in corn);

My:

Million years;

ORF:

Open reading frame;

PCR:

Polymerase chain reaction;

RNA:

Ribonucleic acid;

T-DNA:

Transferred DNA;

TE:

Transposable element;

Ti-plasmid:

Tumor-inducing plasmid

References

  • Adams KL, Clements MJ, Vaughn JC (1998) The Peperomia mitochondrial coxI group I intron: timing of horizontal transfer and subsequent evolution of the intron. J Mol Evol 46:689–696

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM, Richards TA (2010) Gene transfer: anything goes in plant mitochondria. BMC Biol 8:147

    Article  PubMed  CAS  Google Scholar 

  • Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA 101:7805–7808

    Article  PubMed  CAS  Google Scholar 

  • Barkman TJ, McNeal JR, Lim S-H, Coat G, Croom HB, Young ND, dePamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248

    Article  PubMed  Google Scholar 

  • Belshaw R, Bensasson D (2006) The rise and falls of introns. Heredity 96:208–213

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22

    Article  PubMed  CAS  Google Scholar 

  • Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc R Soc B 277(1683):819–827

    Article  PubMed  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodrıguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Palmer JD (1999) Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial coxl gene during evolution of the Araceae family. Mol Biol Evol 16:1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Adams KL, Qiu Y-L, Kuhlman P, Vaughn JC, Palmer JD (1998a) A highly invasive group I intron in the mitochondrial cox1 gene. In: Moller I-M, Gardestrom P, Glimelius K, Glaser E (eds) Plant mitochondria: from gene to function. Backhuys, Leiden, pp 19–23

    Google Scholar 

  • Cho Y, Qiu Y-L, Kuhlman P, Palmer JD (1998b) Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 95:14244–14249

    Article  PubMed  CAS  Google Scholar 

  • Cohen O, Pupko T (2010) Inference and charac­terization of horizontally transferred gene families using stochastic mapping. Mol Biol Evol 27:703–713

    Article  PubMed  CAS  Google Scholar 

  • Cusimano N, Zhang L-B, Renner SS (2008) Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer. Mol Biol Evol 25:1–12

    Article  Google Scholar 

  • Danchina EGJ, Rossoa M-N, Vieiraa P, de Almeida-Englera J, Coutinhob PM, Henrissat B, Abad P (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci USA 107:17651–17656

    Article  Google Scholar 

  • Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678

    Article  PubMed  CAS  Google Scholar 

  • Davis CC, Anderson WR, Wurdack KJ (2005) Gene transfer from a parasitic flowering plant to a fern. Proc R Soc B 272:2237–2242

    Article  PubMed  CAS  Google Scholar 

  • Diao X, Freeling M, Lisch D (2006) Horizontal transfer of a plant transposon. PLoS Biol 4:e5

    Article  PubMed  Google Scholar 

  • Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B (2001) An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci USA 98:485–490

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Thomas RH, Williams RAD (1993) Reduced thermophilic bias in the 16S rDNA sequence from Thermus ruber provides further support for a relationship between Thermus and Deinococcus. Syst Appl Microbiol 16:25–29

    Article  CAS  Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatability methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferandon C, Moukha S, Callac P, BenedettoJ-P CM, Barroso G (2010) The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group I introns. PLoS ONE 5:e14048

    Article  PubMed  Google Scholar 

  • Filipowicz N, Renner SS (2010) The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evol Biol 10:219

    Article  PubMed  Google Scholar 

  • Foster PG, Cox CJ, Embley TM (2009) The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Philos Trans R Soc Lond B 364:2197–2207

    Article  Google Scholar 

  • Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676

    Article  PubMed  CAS  Google Scholar 

  • Gilbert C, Schaack S, Pace JK, Brindley PJ, Feschotte C (2010) A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature 464:1347–1352

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev 3:679–687

    Article  CAS  Google Scholar 

  • Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26:99–110

    Article  PubMed  CAS  Google Scholar 

  • Graham LA, Lougheed SC, Ewart KV, Davies PL (2008) Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS One 3:e2616

    Article  PubMed  Google Scholar 

  • Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 37:5093–5104

    Article  PubMed  CAS  Google Scholar 

  • Hao W (2010) OrgConv: detection of gene conversion using consensus sequences and its application in plant mitochondrial and chloroplast homologs. BMC Bioinformatics 11:114

    Article  PubMed  Google Scholar 

  • Hao W, Palmer JD (2009) Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes. Proc Natl Acad Sci USA 106:16728–16733

    Article  PubMed  CAS  Google Scholar 

  • Hao W, Richardson AO, Zheng Y, Palmer JD (2010) Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proc Natl Acad Sci USA 107:21576–21581

    Article  PubMed  CAS  Google Scholar 

  • Hecht J, Grewe F, Knoop V (2011) Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol 3:344–358

    Google Scholar 

  • Henze K, Martin W (2001) How do mitochondrial genes get into the nucleus? Trends Genet 17:383–387

    Article  PubMed  CAS  Google Scholar 

  • Hill T, Nordström KJV, Thollesson M, Säfström TM, Vernersson AKE, Fredriksson R, Schiöth HB (2010) SPRIT: identifying horizontal gene transfer in rooted phylogenetic trees. BMC Evol Biol 10:42

    Article  PubMed  Google Scholar 

  • Inda LA, Pimentel M, Chase MW (2010) Contribution of mitochondrial cox1 intron sequences to the phylogenetics of tribe Orchideae (Orchidaceae): do the distribution and sequence of this intron in orchids also tell us something about its evolution? Taxon 59:1053–1064

    Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2009a) Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev 19:613–619

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2009b) Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids. In: Gogarten MB et al (eds) Horizontal gene transfer: genomes in flux, vol 532, Methods in molecular biology., pp 501–515

    Chapter  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  PubMed  CAS  Google Scholar 

  • Knoop V, Volkmar U, Hecht J, Grewe F (2010) Mitochondrial genome evolution in the plant lineage. In: Kempken F (ed) Plant mitochondria, vol 1, Advances in plant biology., pp 3–29

    Google Scholar 

  • Koski LB, Golding B (2001) The closest BLAST hit is often not the nearest neighbor. J Mol Evol 52:540–542

    PubMed  CAS  Google Scholar 

  • Koulintchenko M, Konstantinov Y, Dietrich A (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 22:1245–1254

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci USA 100:9658–9662

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62:587–622

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, The International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Ham B-K, Kim J-Y (2009) Plasmodesmata – bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503

    Article  PubMed  CAS  Google Scholar 

  • Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, WoloshukC XX, Xu J-R, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Van Hua A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee Y-H, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park SY, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  PubMed  CAS  Google Scholar 

  • Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, Ribalet F, Murphy MEP, Maldonado MT, Armbrust EB (2009) Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457(22):467–470

    Article  PubMed  CAS  Google Scholar 

  • Martin W (2005) Lateral gene transfer and other possibilities. Heredity 94:565–566

    Article  PubMed  CAS  Google Scholar 

  • Mirkin BG, Fenner TI, Galperin MY, Koonin EV (2003) Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 3:2

    Article  PubMed  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Mower JP, Stefanovic S, Young GJ, Palmer JD (2004) Gene transfer from parasitic to host plants. Nature 432:165–166

    Article  PubMed  CAS  Google Scholar 

  • Mower JP, Stefanovic S, Hao W, Gummow JS, Jain K, Ahmed D, Palmer JD (2010) Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biol 8:150

    Article  PubMed  CAS  Google Scholar 

  • Nickrent DL, Blarer A, Qiu YL, Vidal-Russell R, Anderson FE (2004) Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evol Biol 4:40

    Article  PubMed  Google Scholar 

  • Nishida H, Sugiyama J (1995) A common group I intron between a plant parasitic fungus and its host. Mol Biol Evol 12:883–886

    PubMed  CAS  Google Scholar 

  • Noble GP, Rogers MB, Keeling PJ (2007) Complex distribution of EFL and EF-1alpha proteins in the green algal lineage. BMC Evol Biol 7:82

    Article  PubMed  Google Scholar 

  • Odom OW, Shenkenberg DL, Garcia JA, Herrin DL (2004) A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity. RNA 10:1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Omer S, Kovacs A, Mazor Y, Gophna U (2010) Integration of a foreign gene into a native complex does not impair fitness in an experimental model of lateral gene transfer. Mol Biol Evol 27:2441–2445

    Article  PubMed  CAS  Google Scholar 

  • Ragan MA, Beiko RG (2009) Lateral genetic transfer: open issues. Philos Trans R Soc Lond B 364:2241–2251

    Article  CAS  Google Scholar 

  • Ragan MA, Harlow TJ, Beiko RG (2006) Do different surrogate methods detect lateral genetic transfer events of different relative ages? Trends Microbiol 14:4–8

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:1897–1911

    Article  PubMed  CAS  Google Scholar 

  • Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58:1–9

    Article  PubMed  CAS  Google Scholar 

  • Rogers MB, Watkins RF, Harper JT, Durnford DG, Gray MW, Keeling PJ (2007) A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer. BMC Evol Biol 7:89

    Article  PubMed  Google Scholar 

  • Roney JK, Khatibi PA, Westwood JH (2007) Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol 143:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Salzberg SL, White O, Peterson J, Eisen JA (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903–1906

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Gracia A, Maside X, Charlesworth B (2005) High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet 21:200–203

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD (2008) Frequent, phylogenetically local horizontal transfer of the cox1 group I intron in flowering plant mitochondria. Mol Biol Evol 25:1762–1777

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Puerta MV, Abbona CC, Zhuo S, Tepe EJ, Bohs L, Olmstead RG, Palmer JD (2011) Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended coconversion of flanking exons. BMC Evol Biol 11:277

    Article  PubMed  CAS  Google Scholar 

  • Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546

    Article  PubMed  Google Scholar 

  • Schönenberger J, Anderberg AA, Sytsma KJ (2005) Molecular phylogenetics and patterns of floral evolution in the ericales. Int J Plant Sci 166:265–288

    Article  Google Scholar 

  • Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755

    Article  PubMed  CAS  Google Scholar 

  • Snir S, Trifonov E (2010) A novel technique for detecting putative horizontal gene transfer in the sequence space. J Comput Biol 17:1535–1548

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EP (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318:1449–1452

    Article  PubMed  CAS  Google Scholar 

  • Stanhope MJ, Lupas A, Italia MJ, Koretke KK, Volker C, Brown JR (2001) Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:940–944

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324:649–651

    Article  PubMed  CAS  Google Scholar 

  • Stiller JW (2011) Experimental design and statistical rigor in phylogenomics of horizontal and endosymbiotic gene transfer. BMC Evol Biol 11:259

    Article  PubMed  Google Scholar 

  • Ãœlker B, Li Y, Rosso MG, Logemann E, Somssich IE, Weisshaar B (2008) T-DNA–mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotechnol 26:1015–1017

    Article  PubMed  Google Scholar 

  • Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia. J Mol Evol 41:563–572

    Article  PubMed  CAS  Google Scholar 

  • Wolf YI, Kondrashov FA, Koonin EV (2001) Footprints of primordial introns on the eukaryotic genome: still no clear traces. Trends Genet 17:499–501

    Article  PubMed  CAS  Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Maruyama S, Nozaki H, Shirasu K (2010) Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328:1128

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne S. Renner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Renner, S.S., Bellot, S. (2012). Horizontal Gene Transfer in Eukaryotes: Fungi-to-Plant and Plant-to-Plant Transfers of Organellar DNA. In: Bock, R., Knoop, V. (eds) Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2920-9_10

Download citation

Publish with us

Policies and ethics