Skip to main content

Calibration and Validation of Agent-Based Models of Land Cover Change

  • Chapter
  • First Online:
Agent-Based Models of Geographical Systems

Abstract

This chapter considers two important issues in the development of agent-based models, i.e. calibration and validation. These terms are defined and framed into a step-by-step process. Each step is then explained in further detail and illustrated using an agent-based model of shifting cultivation developed by Ngo (2009) as part of his PhD research project. Although the process of model validation presented here is applicable to agent-based models in general, some of the finer details are more relevant to agent-based models of land use and land cover change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Ahmadi, K., Heppenstall, A., Hogg, J., & See, L. (2009). A Fuzzy Cellular Automata Urban Growth Model (FCAUGM) for the city of Riyadh, Saudi Arabia. Part 1: Model structure and validation. Applied Spatial Analysis and Policy, 2, 65–83.

    Article  Google Scholar 

  • Armstrong, J. S., & Collopy, F. (1992). Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting, 8, 69–80.

    Article  Google Scholar 

  • Beck, J. R., & Shultz, E. (1986). The use of relative operating characteristic (ROC) curves in test performance evaluation. Archives of Pathology & Laboratory Medicine, 110, 13–20.

    Google Scholar 

  • Berger, T., Goodchild, M., Janssen, M.A., Manson, S. M., Najlis, R., & Parker, D. C. (2001). Methodological considerations for agent-based modelling of land-use and land-cover change. In D. C. Parker, T. Berger, & S. M. Manson (Eds.), Agent-based models of land-use and land-cover change. Report and Review of an International Workshop. Irvine.

    Google Scholar 

  • Bettonvil, B., & Kleijnen, J. P. C. (1997). Searching for important factors in simulation models with many factors: Sequential bifurcation. European Journal of Operational Research, 96, 180–194.

    Article  Google Scholar 

  • Box, G. E. P., Hunter, J. S., & Hunter, W. G. (1978). Statistics for experimenters: An introduction to design, data analysis, and model building. New York: Wiley.

    Google Scholar 

  • Carley, K. M. (1996). Validating computational models (Working Paper). Pittsburgh: Carnegie Mellon University.

    Google Scholar 

  • Castella, J.-C., & Verburg, P. H. (2007). Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecological Modelling, 202, 410–420.

    Article  Google Scholar 

  • Chatfield, C. (1992). A commentary on error measures. International Journal of Forecasting, 8, 100–102.

    Article  Google Scholar 

  • Costanza, R. (1989). Model goodness of fit: A multiple resolution procedure. Ecological Modelling, 47, 199–215.

    Article  Google Scholar 

  • Crooks, A. T., Castle, C. J. E., & Batty, M. (2007). Key challenges in agent-based modelling for geo-spatial simulation (CASA Working Paper 121). URL: http://www.casa.ucl.ac.uk/publications/workingPaperDetail.asp?ID=121

  • Fawcett, T. (2003). ROC graphs: Notes and practical considerations for researchers (HP Labs Technical Report HPL-2003-4).

    Google Scholar 

  • Fletcher, R. (2000). Practical methods of optimization (2nd ed.). Chichester: Wiley.

    Google Scholar 

  • Happe, K. (2005). Agent-based modelling and sensitivity analysis by experimental design and metamodelling: An application to modelling regional structural change. European Association of Agricultural Economists, Copenhagen.

    Google Scholar 

  • Heppenstall, A. J., Evans, A. J., & Birkin, M. H. (2007). Genetic algorithm optimisation of an agent-based model for simulating a retail market. Environment and Planning B: Planning and Design, 34, 1051–1070.

    Article  Google Scholar 

  • Holland, J. H. (1992). Adaptation in natural and artificial systems. Cambridge, MA: MIT Press.

    Google Scholar 

  • Jepsen, M. R., Leisz, S., Rasmussen, K., Jakobsen, J., Moller-Jensen, L., & Christiansen, L. (2006). Agent-based modelling of shifting cultivation field patterns, Vietnam. International Journal of Geographical Information Science, 20, 1067–1085.

    Article  Google Scholar 

  • Kleijnen, J. P. C., & Van Groenendaal, W. (1992). Simulation: A statistical perspective. Chichester: Wiley.

    Google Scholar 

  • Kleijnen, J. P. C., Sanchez, S. M., Lucas, T. W., & Cioppa, T. M. (2003). A user’s guide to the brave new world of designing simulation experiments. Tilburg: Tilburg University, Center for Economic Research.

    Google Scholar 

  • Klügl, F. (2008). A validation methodology for agent-based simulations. In Proceedings of the 2008 ACM Symposium on Applied Computing – Advances in Computer Simulation. ACM. New York, NY, USA, 39–43.

    Google Scholar 

  • Le, Q. B. (2005). Multi-agent system for simulation of land-use and land cover change: A theoretical framework and its first implementation for an upland watershed in the central coast of Vietnam. Gottingen: ZEF.

    Google Scholar 

  • Madsen, H., Wilson, G., & Ammentorp, H. C. (2002). Comparison of different automated strategies for calibration of rainfall-runoff models. Journal of Hydrology, 261, 48–59.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. Oxford: WH Freeman and Co.

    Google Scholar 

  • Manson, S. M. (2002). Validation and verification of multi-agent systems. In M. A. Janssen (Ed.), Complexity and ecosystem management – The theory and practice of multi-agent systems. Cheltenham: Elgar.

    Google Scholar 

  • Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ngo, T. A. (2009). Simulating spatial patterns of shifting cultivation – A village case study from the uplands of Vietnam. Unpublished PhD thesis, School of Geography, University of Leeds, Leeds.

    Google Scholar 

  • Ngo, T. A., Drake, F., & See, L. (2012). An agent-based modelling application of shifting cultivation. In A. J. Heppenstall, A. Crooks, L. M. See & M. Batty (Eds.), Agent-based models for geographical systems (pp. 611–627). Dordrecht: Springer.

    Google Scholar 

  • Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2002). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93, 314–337.

    Article  Google Scholar 

  • Pontius, R. G., & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems and Environment, 85, 239–248.

    Article  Google Scholar 

  • Qudrat-Ullah, H. (2005). Structure validation of system dynamics and agent-based simulation models. In Y. Merkuryev, R. Zobel, & E. Kerckhoffs (Eds.), Proceedings of the 19th European Conference on Modelling and Simulation (pp. 481–485). Riga: ECMS.

    Google Scholar 

  • Rogers, A., & von Tessin, P. (2004, May). Multi-objective calibration for agent-based models. In: Agent-Based Simulation 5, Lisbon.

    Google Scholar 

  • Soman, S., Misgna, G., Kraft, S., Lant, C., & Beaulieu, J. (2008). An agent-based model of multifunctional agricultural landscape using genetic algorithms. In American Agricultural Economics Association Annual Meeting, Orlando.

    Google Scholar 

  • Troitzsch, K. G. (2004). Validating simulation models. In Proceedings of the 18th European Simulation Multi-conference. SCS Europe, Magdeburg.

    Google Scholar 

  • Turner, M. G., Costanza, R., & Sklar, F. H. (1989). Methods to evaluate the performance of spatial simulation models. Ecological Modelling, 48, 1–18.

    Article  Google Scholar 

  • Wada, Y., Rajan, K. S., & Shibasaki, R. (2007). Modelling the spatial distribution of shifting cultivation in Luangprabang, Lao PDR. Environment and Planning B: Planning and Design, 34, 261–278.

    Article  Google Scholar 

  • Windrum, P. F., Fagiolo, G., & Moneta, A. (2007). Empirical validation of agent-based models: Alternatives and prospects. Journal of Artificial Societies and Social Simulation, 10(2), 8. URL: http://jasss.soc.surrey.ac.uk/10/2/8.html

  • Winer, B. J. (1971). Statistical principles in experimental design. New York: McGraw-Hill.

    Google Scholar 

  • Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1998). Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204, 83–97.

    Article  Google Scholar 

  • Zeigler, B. P. (1976). Theory of modelling and simulation. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to The An Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ngo, T.A., See, L. (2012). Calibration and Validation of Agent-Based Models of Land Cover Change. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_10

Download citation

Publish with us

Policies and ethics