Skip to main content

Breakdown of the Blood-Brain Barrier in Stress Alters Cognitive Dysfunction and Induces Brain Pathology: New Perspectives for Neuroprotective Strategies

  • Chapter
  • First Online:
Brain Protection in Schizophrenia, Mood and Cognitive Disorders

Abstract

Emotional, psychological or environmental stress (e.g., heat or nanoparticles) influences brain function. However, the detailed mechanisms of stress induced brain dysfunction are not well known. Research carried out in our laboratory since last 20 years show that various kinds of stressors depending on their magnitude and durations alter the blood-brain barrier (BBB) permeability to proteins leading to brain pathology. These stressed animals also show marked behavioral and cognitive deficits at the time of the BBB leakage. Entry of several restricted elements from the blood to the brain compartment after breakdown of the BBB results in immunological, biochemical and pathological reaction causing brain edema formation and cell injury. Blockade of several neurochemical receptors, e.g., serotonin, prostaglandin or opioids as well as neutralization of key neurodestructive elements, i.e., neuronal nitric oxide synthase (nNOS), Tumor necrosis factor-alpha (TNF-α), dynorphin A or hemeoxygenase-2 (HO-2) using specific drugs or antibodies against these factors reduces BBB disturbances, cognitive and behavioral dysfunction, and brain pathology. Based on these new evidences, it appears that the BBB is the gateway to neuropsychiatric diseases. Thus, efforts should be made to maintain a healthy BBB in various brain diseases to achieve neuroprotection. The possible mechanisns of BBB breakdown and brain pathology in stress in relation to altered cognitive and sensory-motor functions is discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood-brain barrier

bbb:

brain-blood-barrier

nNOS:

neuronal nitric oxide synthase

TNF-α:

Tumor necrosis factor alpha

HO-2:

Hemeoxygenase-2

IPS:

Information processing system

GAS:

General adaptation syndrome

CRF:

Corticotrophin releasing factor

ACTH:

Adrenocorticotrophic hormone

HPA:

Hypothalamus pituitary adrenal axis

TRH:

Thyrotrophin releasing hormone

PVN:

Para ventricular nucleaus

DHEAS:

dehydroepiandrosterone sulfate

WN-25:

West Nile virus

SFV-A7:

Semliki Forest virus

EBA:

Evans blue albumin

PS:

Paradoxical sleep

SWS:

Slow wave sleep

ROS:

Reactive oxygen species

WBH:

whole body hyperthermia

BSCB:

Blood-spinal cord barrier

Dyn:

Dynorphin A

5-HT:

5-hydroxytryptamine

CNS:

Central nervous system

p-CPA:

para-Cholorophenylalanine

H1:

Histamine H1 receptor

H2:

Histamine H2 receptor

5,7-DHT:

5,7-dihydroxytryptamine

6-OHDA:

6-hydroxydopamine

References

  1. Ehrlich P. Das Sauerstoff-Bedürfniss des Organismus: eine farbenanalytische Studie. Hirschwald, Berlin; 1885

    Google Scholar 

  2. Sharma HS, Dey PK. Impairment of blood-brain barrier (BBB) in rat by immobilization stress: role of serotonin (5-HT). Indian J Physiol Pharmacol 1981 Apr–Jun; 25(2):111–122

    PubMed  CAS  Google Scholar 

  3. Sharma HS, Dey PK. Role of 5-HT on increased permeability of blood-brain barrier under heat stress. Indian J Physiol Pharmacol 1984 Oct–Dec; 28(4):259–267

    PubMed  CAS  Google Scholar 

  4. Sharma HS. Blood-Brain Barrier in Stress, Ph D Thesis, Banaras Hindu University, Varanasi, India, 1982; pp. 1–85

    Google Scholar 

  5. Sharma HS, Dey PK. Influence of long-term immobilization stress on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. J Neurol Sci 1986; 72:61–76

    Article  PubMed  CAS  Google Scholar 

  6. Sharma HS, Dey PK. Influence of long-term acute heat exposure on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. Brain Res 1987; 424:153–162

    Article  PubMed  CAS  Google Scholar 

  7. Sharma HS, Dey PK. EEG changes following increased blood-brain barrier permeability under long-term immobilization stress in young rats. Neurosci Res 1988; 5:224–239

    Article  PubMed  CAS  Google Scholar 

  8. Sharma HS, Cervós-Navarro J, Dey PK Acute heat exposure causes cellular alteration in cerebral cortex of young rats. NeuroReport 1991; 2:155–158

    Article  PubMed  CAS  Google Scholar 

  9. Sharma HS, Nyberg F, Cervós-Navarro J, Dey PK Histamine modulates heat stress induced changes in blood-brain barrier permeability, cerebral blood flow, brain oedema and serotonin levels: an experimental study in conscious young rats. Neuroscience 1992; 50:445–454

    Article  PubMed  CAS  Google Scholar 

  10. Sharma HS, Westman J, Cervós-Navarro J, Dey PK, Nyberg F Opioid receptor antagonists attenuate heat stress-induced reduction in cerebral blood flow, increased blood-brain barrier permeability, vasogenic brain edema and cell changes in the rat. Ann NY Acad Sci 1997; 813:559–571

    Article  PubMed  CAS  Google Scholar 

  11. Sharma HS. Pathophysiology of blood-brain barrier, brain edema and cell injury following hyperthermia: New role of heat shock protein, nitric oxide and carbon monoxide. an experimental study in the rat using light and electron microscopy, Acta Universitatis Upsaliensis 1999; 830:1–94

    Google Scholar 

  12. Sharma HS. Blood-brain and spinal cord barriers in stress. In: Sharma HS, Westman J (eds) The Blood-Spinal Cord and Brain Barriers in Health and Disease, Elsevier Academic Press, San Diego, 2004; pp. 231–298

    Chapter  Google Scholar 

  13. Sharma HS. Blood-central nervous system barriers. A gateway to neurodegeneration, neuroprotection and neuroregeneration. Hand Book of Neurochem Mol Neurobiol, Vol. 24, Ch. 11, Springer, Berlin, New York, 2009; pp. 163–209

    Google Scholar 

  14. Rapoprt SI. Blood-Brain Barrier in Physiology and Medicine. Raven Press, New York; 1976

    Google Scholar 

  15. Bradbury MW. The Concept of a Blood Brain Barrier. Chicester, UK; 1979

    Google Scholar 

  16. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969; 4:648–677

    Article  Google Scholar 

  17. Majno G, Palade GE. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec; 11:571–605

    Article  PubMed  CAS  Google Scholar 

  18. Brightman MW. Morphology of blood-brain interfaces. Exp Eye Res. 1977; 25(Suppl):1–25. Review

    Google Scholar 

  19. Brightman MW. The brain’s interstitial clefts and their glial walls. J Neurocytol. 2002 Sep–Nov; 31(8–9):595–603. Review

    Google Scholar 

  20. Sharma HS. New perspectives for the treatment options in spinal cord injury. Expert Opin Pharmacother 2008 Nov; 9(16):2773–2800. Review

    Google Scholar 

  21. Sharma H S, Westman J. The Blood-Spinal Cord and Brain Barriers in Health and Disease, Academic Press, San Diego, USA, 2004; pp. 1–617 (Release date: Nov. 9, 2003)

    Google Scholar 

  22. Sharma H S, Alm P. Role of nitric oxide on the blood-brain and the spinal cord barriers. In: Sharma HS, Westman J (eds) The Blood-Spinal Cord and Brain Barriers in Health and Disease, Elsevier Academic Press, San Diego, 2004; pp. 191–230

    Chapter  Google Scholar 

  23. Sharma HS, Westman J, Nyberg F. Pathophysiology of brain edema and cell changes following hyperthermic brain injury. In: Sharma HS, Westman J (eds) Brain Functions in Hot Environment, Progress in Brain Research, 1998; 115:351–412

    Google Scholar 

  24. Sharma HS, Westman J, Cervós-Navarro J, Dey PK, Nyberg F. Blood-brain barrier in stress: a gateway to various brain diseases. In: Levy A, Grauer E, Ben-Nathan D, de Kloet ER (eds) New Frontiers of Stress Research: Modulation of Brain Function, Harwood Academic Publishers Inc., Amsterdam, 1998; pp. 259–276

    Google Scholar 

  25. Sharma HS. Influence of serotonin on the blood-brain and blood-spinal cord barriers. In: Sharma HS, Westman J (eds) The Blood-Spinal Cord and Brain Barriers in Health and Disease, Elsevier Academic Press, San Diego, 2004; pp. 117–158

    Chapter  Google Scholar 

  26. Sharma HS. Histamine influences the blood-spinal cord and brain barriers following injuries to the central nervous system. In: Sharma HS, Westman J (eds) The Blood-Spinal Cord and Brain Barriers in Health and Disease, Elsevier Academic Press, San Diego, 2004; pp. 159–190

    Chapter  Google Scholar 

  27. Sharma HS. Selective neuronal vulnerability, blood-brain barrier disruption and heat shock protein expression in stress induced neurodegeneration. Invited Review: In: Sarbadhikari SN (ed) Depression and Dementia: Progress in Brain Research, Clinical Applications and Future Trends , Nova Science Publishers Inc., New York, 2005; pp. 97–152

    Google Scholar 

  28. Sharma HS. Neurotrophic factors in combination: a possible new therapeutic strategy to influence pathophysiology of spinal cord injury and repair mechanisms. Curr Pharm Des 2007; 13(18):1841–1874. Review

    Google Scholar 

  29. Bradbury MWB. Physiology and pharmacology of the blood-brain barrier. Handbook Exp Pharmacol 1990; 103: 1–450, Springer, Heidelberg

    Google Scholar 

  30. Johansson BB, Auer LM. Neurogenic modification of the vulnerability of the blood-brain barrier during acute hypertension in conscious rats. Acta Physiol Scand 1983 Apr; 117(4):507–511

    Article  PubMed  CAS  Google Scholar 

  31. Johansson BB. The blood-brain barrier and cerebral blood flow in acute hypertension. Acta Med Scand Suppl 1983; 678:107–112

    PubMed  CAS  Google Scholar 

  32. Johansson BB, Auer LM, Linder LE. Phenothiazine-mediated protection of the blood-brain barrier during acute hypertension. Stroke 1982 Mar–Apr; 13(2):220–225

    Article  PubMed  CAS  Google Scholar 

  33. Johansson BB. Cerebral vascular bed in hypertension and consequences for the brain. Hypertension. 1984 Nov–Dec; 6(6 Pt 2):III81–III86

    Google Scholar 

  34. Johansson BB. Hypertension mechanisms causing stroke. Clin Exp Pharmacol Physiol 1999 Jul; 26(7):563–565. Review

    Google Scholar 

  35. Edvinsson L, Johansson BB, Larsson B, MacKenzie ET, Skärby T, Young AR. Calcium antagonists: effects on cerebral blood flow and blood-brain barrier permeability in the rat. Br J Pharmacol 1983 May; 79(1):141–148

    Article  PubMed  CAS  Google Scholar 

  36. Larsson B, Skärby T, Edvinsson L, Hardebo JE, Owman C. Vincristine reduces damage of the blood-brain barrier induced by high intravascular pressure. Neurosci Lett 1980 Apr; 17(1–2):155–159

    Article  PubMed  CAS  Google Scholar 

  37. Nag S, Harik SI. Cerebrovascular permeability to horseradish peroxidase in hypertensive rats: effects of unilateral locus ceruleus lesion. Acta Neuropathol 1987; 73(3):247–253

    Article  PubMed  CAS  Google Scholar 

  38. Nag S. Cerebral endothelial plasma membrane alterations in acute hypertension. Acta Neuropathol 1986; 70(1):38–43

    Article  PubMed  CAS  Google Scholar 

  39. Nag S. Cerebral changes in chronic hypertension: combined permeability and immunohistochemical studies. Acta Neuropathol 1984; 62(3):178–184

    Article  PubMed  CAS  Google Scholar 

  40. Nag S. Cerebral endothelial surface charge in hypertension. Acta Neuropathol 1984; 63(4):276–281

    Article  PubMed  CAS  Google Scholar 

  41. Nag S, Robertson DM, Dinsdale HB. Intracerebral arteriolar permeability to lanthanum. Am J Pathol 1982 Jun; 107(3):336–341

    PubMed  CAS  Google Scholar 

  42. Nag S, Robertson DM, Dinsdale HB. Quantitative estimate of pinocytosis in experimental acute hypertension. Acta Neuropathol 1979 Apr 12; 46(1–2):107–116

    Article  PubMed  CAS  Google Scholar 

  43. Sharma HS, Johanson CE. Blood-cerebrospinal fluid barrier in hyperthermia.Prog Brain Res 2007; 162:459–478. Review

    Google Scholar 

  44. Sharma HS, Johanson CE. Intracerebroventricularly administered neurotrophins attenuate blood cerebrospinal fluid barrier breakdown and brain pathology following whole-body hyperthermia: an experimental study in the rat using biochemical and morphological approaches. Ann NY Acad Sci. 2007 Dec; 1122:112–129

    Article  PubMed  CAS  Google Scholar 

  45. Sharma HS, Duncan JA, Johanson CE. Whole-body hyperthermia in the rat disrupts the blood-cerebrospinal fluid barrier and induces brain edema. Acta Neurochir Suppl 2006; 96:426–431

    Article  PubMed  CAS  Google Scholar 

  46. Selye H. A syndrome produced by diverse noccuous agents. Nature (Lond) 1936; 138:32

    Article  Google Scholar 

  47. Chrousos GP, Gold PW. The concept of stress and stress system disorders: Overview of physical and behavioral homeostasis. JAMA 1992; 267:1244–1252

    Article  PubMed  CAS  Google Scholar 

  48. Friedman MJ, Charbey DS, Deutch AY. Neurobiological and Clinical Consequences of Stress, Lipincott-Raven, Philadelphia; 1995

    Google Scholar 

  49. Sharma HS, Westman J. Brain Functions in Hot Environment, Progress in Brain Research, 115, Elsevier, Amsterdam, 1998; pp. 1–516

    Google Scholar 

  50. Selye H. Stress in Health and Disease. Butterworths, London; 1976

    Google Scholar 

  51. Foa EB, Zinbarg R, Olasov-Rothbaum B. Uncontrollability and unpredictability in post-traumatic stress disorder: an animal model. Psychol Bull 1992; 112:218–238

    Article  PubMed  CAS  Google Scholar 

  52. Gazzaniga MS. The Cognitive Neurosciences. MIT Press, Cambridge, MA; 1995

    Google Scholar 

  53. McEwen BS, Sapolsky RM. Stress and cognitive function. Curr Opin Neurobiol 1995; 5:205–217

    Article  PubMed  CAS  Google Scholar 

  54. Sapolsky RM. Stress, the aging brain, and the mechanisms of neuronal death. MIT Press, Cambridge, MA; 1992

    Google Scholar 

  55. Sapolsky RM. Why stress is bad for your brain. Science 1996; 273:749–750

    Article  PubMed  CAS  Google Scholar 

  56. Sharma HS, Westman J. Pathophysiology of hyperthermic brain injury. Current concepts, molecular mechanisms and pharmacological strategies. Research in Legal Medicine Vol. 21 Hyperthermia, Burning and Carbon Monoxide, Oehmichen M (ed) Lübeck Medical University Publications, Schmidt-Römhild Verlag, Lübeck, Germany, 2000; pp. 79–120

    Google Scholar 

  57. McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med 1993; 153:2093–2101

    Article  PubMed  CAS  Google Scholar 

  58. Kathol RG, Jaeckle RS, Lopez JF, Meller WH. Consistent reduction of ACTH responses to stimulation with CRH, vasopressin and hypoglycaemia in patients with major depression. Br J Psychiatry 1989; 155:468–478

    Article  PubMed  CAS  Google Scholar 

  59. Charney DS, Deutch AY, Krystal JH, Southwick SM, Davis M. Psychobiologic mechanisms of posttraumatic stress disorder. Arch Gen Psychiatry 1993; 50:295–305

    PubMed  CAS  Google Scholar 

  60. Landfield PW, Eldridge JC. The glucocorticoid hypothesis of brain aging and neurodegeneration: recent modifications. Acta Endocrinol (Copenh) 1991; 125(Suppl 1):54–64

    Google Scholar 

  61. Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997; 20:78–84

    Article  PubMed  CAS  Google Scholar 

  62. Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 1991; 14:60–67

    Article  PubMed  CAS  Google Scholar 

  63. Bronstein JM, Farber DB, Wasterlain CG. Regulation of type-II calmodulin kinase: functional implications. Brain Res Rev 1993; 18(1):135–147

    Article  PubMed  CAS  Google Scholar 

  64. Hughes P, Dragunow M. Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 1995; 47(1):133–178

    PubMed  CAS  Google Scholar 

  65. Sharma HS, Westman J. The heat shock proteins and hemeoxygenase response in central nervous system injuries. In: Sharma HS, Westman J (eds) The Blood-Spinal Cord and Brain Barriers in Health and Disease, Elsevier Academic Press, San Diego, 2004; pp. 329–360

    Chapter  Google Scholar 

  66. Abdul-Rahman A, Dahlgren N, Johansson BB, Siesjö BK. Increase in local cerebral blood flow induced by circulating adrenaline: involvement of blood-brain barrier dysfunction. Acta Physiol Scand 1979; 107:227–232

    Article  PubMed  CAS  Google Scholar 

  67. Abercrombie ED, Jacobs BL. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. II. Adaptation to chronically presented stressful stimuli. J Neurosci 1987; 7(9):2844–2848

    PubMed  CAS  Google Scholar 

  68. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 1995; 64(2):477–505

    Article  PubMed  CAS  Google Scholar 

  69. Smith MA, Brady LS, Glowa J, Gold PW, Herkenham M. Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in the locus coeruleus by in situ hybridization. Brain Res 1991; 544(1):26–32

    Article  PubMed  CAS  Google Scholar 

  70. Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM. Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci 1989; 9:1705–1711

    PubMed  CAS  Google Scholar 

  71. McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci 1999; 22:105–122

    Article  PubMed  CAS  Google Scholar 

  72. Magarinos AM, McEwen BS, Flugge G, Fuchs E. Chronic psychological stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 1996; 16:3534–3540

    PubMed  CAS  Google Scholar 

  73. Sharma HS, Westman J, Nyberg F, Cervós-Navarro J, Dey PK. Role of serotonin and prostaglandins in brain edema induced by heat stress. An experimental study in the rat. Acta Neurochirurgica (Suppl) 1994; 60:65–70

    CAS  Google Scholar 

  74. Sharma HS, Nyberg F, Olsson Y. Topical application of dynorphin antibodies reduces edema and cell changes in traumatised rat spinal cord. Regulatory Peptide (Supplement) 1994; 1:S91–S92

    Article  Google Scholar 

  75. Gazzaley AH, Weiland NG, McEwen BS, Morrison JH. Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J Neurosci 1996; 16:6830–6838

    PubMed  CAS  Google Scholar 

  76. Popov VI, Bocharova LS, Bragin AG. Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 1992; 48:45–51

    Article  PubMed  CAS  Google Scholar 

  77. Wooley CS, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 1990; 531:225–231

    Article  Google Scholar 

  78. Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 1992; 588:341–345

    Article  PubMed  CAS  Google Scholar 

  79. Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M. Neurotrophins and brain insults. Trends Neurosci 1994; 17:490–496

    Article  PubMed  CAS  Google Scholar 

  80. Zafra F, Lindholm D, Castren E, Hartikka J, Thoenen H. Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurones and astrocytes. J Neurosci 1992; 12:4793–4799

    PubMed  CAS  Google Scholar 

  81. Smith MA. The role of brain-derived neurotrophic factor in the central effects of stress. In: Levy A, Grauer E, Ben-Nathan D, de Kloet E R (eds) New frontiers in Stress Research. Modulation of Brain Function, Harwood Academic Publishers, The Netherlands, 1998; pp. 53–57

    Google Scholar 

  82. Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoid affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNA levels in the hippocampus. J Neurosci 1995; 15:1768–1777

    PubMed  CAS  Google Scholar 

  83. Sofroniew MV, Cooper JD, Svendsen CN, Crossman P, Ip NY, Lindsay RM, Zafra F, Lindholm D. Atrophy but not death of adult septal cholinergic neurones after ablation of target capacity to produce mRNAs for NGF, BDNF and NT3. J Neurosci 1993; 13:5263–5276

    PubMed  CAS  Google Scholar 

  84. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB in rat brain by chronic electroconvulsive seizures and antidepressant drug treatments. J Neurosci 1995; 15:7539–7547

    PubMed  CAS  Google Scholar 

  85. Smith MA, Makino S, Kim S-Y, Kvetnansky R. Stress increases brain-derived neurotrophic factor mRNA in the hypothalamus and pituitary. Endocrinology 1995; 136:3743–3750

    Article  PubMed  CAS  Google Scholar 

  86. Bremner JD, Scott TM, Delancy RC, Southwick SM, Mason JW, Johnson DR, Innis RB, McCarthy G, Charney DS. Deficits in short-term memory in posttraumatic stress disorder. Am J Psychiat 1993; 150:1015–1019

    PubMed  CAS  Google Scholar 

  87. Diamond DM, Fleshner M, Ingersoll N, Rose GM. Psychological stress impairs spatial memory: relevance to electrophysiological studies of hippocampal function. Behav Neurosci 1996; 110:661–672

    Article  PubMed  CAS  Google Scholar 

  88. Diamond DM, Ingersoll N, Branch BJ, Mesches MH, Coleman-Mesches K, Fleshner M. Stress impairs cognitive and electrophysiological measures of hippocampal function. In: Levy A, Grauer E, Ben-Nathan D, de Kloet ER (eds) New frontiers in Stress Research. Modulation of Brain Function, Harwood Academic Publishers, The Netherlands, 1998; pp. 117–126

    Google Scholar 

  89. Cahill L, Prins B, Weber M, McHaugh JL. b-adrenergic activation and memory for emotional events. Nature 1994; 371:702–704

    Article  PubMed  CAS  Google Scholar 

  90. Kalimi M, Shafagoj Y, Loria R, Padgett D, Regelson W. Anti-glucocorticoid effects of dehydroepiandrosterone (DHEA). Mol Cell Biochem 1994; 131:99–104

    Article  PubMed  CAS  Google Scholar 

  91. Diamond DM, Branch BJ, Coleman-Mesches K, Mesches HM, Fleshner M. DHEAS enhances spatial memory and hippocampal primed burst potentiation. Soc Neurosci Abstr 1996; 22:140

    Google Scholar 

  92. Diamond DM, Branch BJ, Fleshner M. The neurosteroid dehydroepiandrosterone sulfate (DHEAS) enhances hippocampal primed burst, but not long-term potentiation. Neurosci Lett 1996; 202:204–208

    Article  PubMed  CAS  Google Scholar 

  93. Rasmussen AF, March JT, Brill NQ. Increased susceptibility to herpes simplex in mice subjected to avoidance-learning stress or restrain. Proc Soc Exp Biol Med 1957; 96:183–189

    PubMed  Google Scholar 

  94. Feng N, Pagniano R, Tovar CA, Bonneaue RH, Glasser R, Sheridan JF. The effect of restraint stress on the kinetics, magnitude, and isotype of the humoral immune response to influenza virus infection. Brain Behav Immun 1991; 5:370–382

    Article  PubMed  CAS  Google Scholar 

  95. Herman JP, Adams D, Prewitt C. Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 1995; 61(2):180–190

    Article  PubMed  CAS  Google Scholar 

  96. Ben-Nathan D, Lustig S, Daneberg H. Stress-induced neuroinvasiveness of a neurovirulent non invasive Sindbis virus in cold or isolation subjected mice. Life Sci 1991; 48:1493–1500

    Article  PubMed  CAS  Google Scholar 

  97. Ben-Nathan D, Kobiler D, Loria RM, Lustig S. Stress-induced central nervous system penetration by non-invasive attenuated encephalitis viruses. In: Levy A, Grauer E, Ben-Nathan D, de Kloet ER (eds) New frontiers in Stress Research. Modulation of Brain Function, Harwood Academic Publishers, The Netherlands, 1998; pp. 277–2283

    Google Scholar 

  98. Friedman SB, Glasgow LA, Ader R. Differential susceptibility to viral agent in mice housed alone or in group. Psychosom Med 1970; 32:285–299

    PubMed  CAS  Google Scholar 

  99. Sheridan JF, Dobbs C, Brown D, Swilling B. Psychoneuroimmunology: Stress effects on pathogenesis and immunity during infection. Clin Microbiol Rev 1994; 7:202–212

    Google Scholar 

  100. Sharp FR, Sagar SM, Hicks K, Lowenstein D, Hisanaga K. c-fos mRNA, Fos, and Fos-related antigen induction by hypertonic saline and stress. J Neurosci 1991; 11(8):2321–2331

    PubMed  CAS  Google Scholar 

  101. Cohen S, Williamson GM. Stress and infectious disease in human. Psychol Bull 1991; 109:5–24

    Article  PubMed  CAS  Google Scholar 

  102. Dantzer R, Kelley KW. Stress and immunity: An integrated view of the relationships between the brain and immune system. Life Sci 1989; 44:1995–2008

    Article  PubMed  CAS  Google Scholar 

  103. Angel C. Starvation, stress and the blood-brain barrier. Dis Nerv Syst 1969; 30:94–97

    PubMed  CAS  Google Scholar 

  104. Sharma HS, Westman J, Navarro JC, Dey PK, Nyberg F. Probable involvement of serotonin in the increased permeability of the blood-brain barrier by forced swimming. An experimental study using Evans blue and 131I-sodium tracers in the rat. Behav Brain Res 1995 Dec 14; 72(1–2):189–196

    Article  PubMed  CAS  Google Scholar 

  105. Sharma HS. Methods to produce hyperthermia-induced brain dysfunction. Prog Brain Res 2007; 162:173–199. Review

    Google Scholar 

  106. Sharma HS. Interaction between amino acid neurotransmitters and opioid receptors in hyperthermia-induced brain pathology. Prog Brain Res 2007; 162:295–317. Review

    Google Scholar 

  107. Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 2007; 162:245–273. Review

    Google Scholar 

  108. Sharma HS. Nanoneuroscience: emerging concepts on nanoneurotoxicity and nanoneuroprotection. Nanomedicine 2007 Dec; 2(6):753–758. Review

    Google Scholar 

  109. Sharma HS. Post-traumatic application of brain-derived neurotrophic factor and glia-derived neurotrophic factor on the rat spinal cord enhances neuroprotection and improves motor function. Acta Neurochir Suppl 2006; 96:329–334

    Article  PubMed  CAS  Google Scholar 

  110. Sharma HS. Neurobiology of hyperthermia. Prog Brain Res 2007; 162:1–523, Elsevier, Amsterdam

    Google Scholar 

  111. Sharma HS, Sharma A. Antibodies As Promising Novel Neuroprotective Agents in the Central Nervous System Injuries. Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal, Vol. 8, No. 3, Sept 2008, pp. 143–169(27). DOI: 10.2174/187152408785699640

    Google Scholar 

  112. Sharma HS, Dey PK. Influence of heat and immobilization stressors on the permeability of blood-brain and blood-CSF barriers. Indian J Physiol Pharmacol 22, Supplement II, 1978; 59–60

    Google Scholar 

  113. Sapolsky RM, Zola-Morgan S, Squire LR. Inhibition of glucocorticoid secretion by the hippocampal formation in the primate. J Neurosci 1991; 11(12):3695–3704

    PubMed  CAS  Google Scholar 

  114. Karst H, Wadman WJ, Joëls M. Corticosteroid receptor-dependent modulation of calcium currents in rat hippocampal CA1 neurons. Brain Res 1994; 649:234–242

    Article  PubMed  CAS  Google Scholar 

  115. Chaouloff F. Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res Rev 1993; 18(1):1–32

    Article  PubMed  CAS  Google Scholar 

  116. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229(2):327–336

    PubMed  CAS  Google Scholar 

  117. Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M. Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 1979; 57(2–3):201–210

    Article  PubMed  CAS  Google Scholar 

  118. Kofman O, Levin U, Alpert C. Lithium attenuates hypokinesia induced by immobilization stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19(6):1081–1090

    Article  PubMed  CAS  Google Scholar 

  119. Miyazato H, Skinner RD, Garcia-Rill E. Locus coeruleus involvement in the effects of immobilization stress on the p13 midlatency auditory evoked potential in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24(7):1177–1201

    Article  PubMed  CAS  Google Scholar 

  120. Belova TI, Jonsson G. Blood-brain barrier permeability and immobilization stress. Acta Physiol Scand 1982; 116:21–29

    Article  PubMed  CAS  Google Scholar 

  121. Dvorská I, Brust P, Hrbas P, Rühle HJ, Barth T, Ermisch A. On the blood-brain barrier to peptides: effects of immobilization stress on regional blood supply and accumulation of labelled peptides in the rat brain. Endocr Regul 1992; 26(2):77–82

    PubMed  Google Scholar 

  122. Esposito P, Gheorghe D, Kandere K, Pang X, Conally R, Jacobson S, Theoharides TC. Acute stress increase permeability of the blood-brain barrier through activation of mast cells. Brain Res 2001; 888:117–127

    Article  PubMed  CAS  Google Scholar 

  123. Esposito P, Chandler N, Kandere K, Basu S, Jacobson S, Connolly R, Tutor D, Theoharides TC. Corticotropin-releasing hormone and brain mast cells regulate blood-brain barrier permeability by acute stress. J Pharmacol Exp Thera 2002; 303:1061–1066

    Article  CAS  Google Scholar 

  124. Ohata M, Fredericks WR, Sundaram U, Rapoport SI. Effects of immobilization stress on regional cerebral blood flow in the conscious rat. J Cereb Blood Flow Metab 1981; 1(2):187–194

    Article  PubMed  CAS  Google Scholar 

  125. Ohata M, Takei H, Fredericks WR, Rapoport SI. Effects of immobilization stress on cerebral blood flow and cerebrovascular permeability in spontaneously hypertensive rats. J Cereb Blood Flow Metab 1982; 2(3):373–379

    Article  PubMed  CAS  Google Scholar 

  126. Sharma HS, Dey PK. Increased permeability of blood-brain barrier (BBB) in stress: Blockade by p-CPA pretreatment. Indian J Physiol Pharmacol 1980; 24(Suppl I): 423–424

    Google Scholar 

  127. Lalonde R. Acquired immobility response in weaver mutant mice. Exp Neurol 1986; 94(3):808–811

    Article  PubMed  CAS  Google Scholar 

  128. Sharma HS, Cervós-Navarro J, Dey PK. Increased blood-brain barrier permeability following acute short-term forced-swimming exercise in conscious normotensive young rats. Neurosci Res 1991; 10:211–221

    Article  PubMed  CAS  Google Scholar 

  129. Miller WR, Seligman EP. Learned helplessness, depression and the perception of reinforcement. Behav Res Ther 1976; 14:7–17

    Article  PubMed  CAS  Google Scholar 

  130. Maier SF, Watkins LR, Fleshner M. Psychoneuroimmunology: the interface between behaviour, brain and immunity. Amer Psych 1994; 49:1001–1018

    Article  Google Scholar 

  131. Van de Kar LD, Piechowski RA, Rittenhouse PA, Gray TS. Amygdaloid lesions: differential effect on conditioned stress and immobilization-induced increases in corticosterone and renin secretion. Neuroendocrinology 1991; 54(2):89–95

    Article  PubMed  Google Scholar 

  132. Petty F, Kramer G, Wilson L, Jordan S. In vivo serotonin release and learned helplessness. Psychiatry Res 1994; 52:285–293

    Article  PubMed  CAS  Google Scholar 

  133. Kupfer DJ. REM latency: a psychobiological marker for primary depressive disease. Biol Psychiatry 1976; 11: 159–174

    PubMed  CAS  Google Scholar 

  134. Kupfer DJ, Spiker DG, Coble PA, Shaw DH. Electroencephalographic sleep recordings and depression in the elderly. J Am Geriatr Soc 1978 Feb; 26(2):53–57

    PubMed  CAS  Google Scholar 

  135. Rotenberg VS, Boucsein W Adaptive versus maladaptive emotional tension. Genetic, Social and General Psychology Monographs 1993; 119:209–232

    CAS  Google Scholar 

  136. Maloney KJ, Mainville L, Jones BE. Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci 1999; 19(8):3057–3072

    PubMed  CAS  Google Scholar 

  137. Maloney KJ, Mainville L, Jones BE. c-Fos expression in GABAergic, serotonergic, and other neurons of the pontomedullary reticular formation and raphe after paradoxical sleep deprivation and recovery. J Neurosci 2000; 20(12):4669–4679

    PubMed  CAS  Google Scholar 

  138. Mendelson WB. The flower pot technique of rapid eye movement (REM) sleep deprivation. Pharmacol Biochem Behav 1974; 2:553–556

    Article  PubMed  CAS  Google Scholar 

  139. Centers for Disease Control and Prevention (CDC). Heat-related deaths – United States, 1999–2003. MMWR Morb Mortal Wkly Rep. 2006 Jul 28; 55(29):796–798

    Google Scholar 

  140. Department of Health. Heatwave—plan for England—protecting health and reducing harm from extreme heat and heatwaves. London: DoH, 2004. http://www.dh.gov.uk/PublicationsAndStatistics/Publications/PublicationsPolicyAndGuidance/PublicationsPolicyAndGuidanceArticle/fs/en?CONTENT_ID=4086874&chk=opuHhJ (published 2004, superseded by 2005 edition; last accessed 10 Aug 2006)

  141. Keatinge WR, Donaldson GC. The impact of global warming on health and mortality. South Med J 2004 Nov; 97(11):1093–1099. Review

    Google Scholar 

  142. Smoyer KE, Rainham DG, Hewko JN. Heat-stress-related mortality in five cities in Southern Ontario: 1980–1996. Int J Biometeorol 2000 Nov; 44(4):190–197

    Article  PubMed  CAS  Google Scholar 

  143. Sharma HS. Heat-related deaths are largely due to brain damage. Indian J Med Res 2005 May; 121(5):621–623

    PubMed  CAS  Google Scholar 

  144. Sharma HS. Hyperthermia influences excitatory and inhibitory amino acid neurotransmitters in the central nervous system. An experimental study in the rat using behavioural, biochemical, pharmacological, and morphological approaches. J Neural Transm 2006 Apr; 113(4):497–519

    Article  PubMed  CAS  Google Scholar 

  145. Knochel JP. Environmental heat illness. An eclectic review. Arch Intern Med 1974 May; 133(5):841–864

    Article  PubMed  CAS  Google Scholar 

  146. Centers for Disease Control and Prevention (CDC). Heat-related deaths – Los Angeles County, California, 1999–2000, and United States, 1979–1998. MMWR Morb Mortal Wkly Rep. 2001 Jul 27; 50(29):623–626

    Google Scholar 

  147. Garssen J, Harmsen C, de Beer J. The effect of the Summer 2003 heat wave on mortality in the Netherlands. Euro Surveill 2005 Jul; 10(7):165–168

    PubMed  CAS  Google Scholar 

  148. Kunst AE, Looman CW, Mackenbach JP. Outdoor air temperature and mortality in The Netherlands: a time-series analysis. Am J Epidemiol 1993 Feb 1; 137(3):331–341

    PubMed  CAS  Google Scholar 

  149. Bouchama A, Knochel JP. Heat stroke. N Engl J Med. 2002 Jun 20; 346(25):1978–1988. Review

    Google Scholar 

  150. Sharma HS, Hoopes PJ. Hyperthermia induced pathophysiology of the central nervous system. Int J Hypertherm 2003; 19:325–354

    Article  CAS  Google Scholar 

  151. Sharma HS, Cervos-Navarro J. Brain oedema and cellular changes induced by acute heat stress in young rats. Acta Neurochir Suppl (Wien) 1990; 51:383–386

    CAS  Google Scholar 

  152. Sharma HS. Nanoneuroscience: nanoneurotoxicity and nanoneuroprotection. J Nanosci Nanotechnol 2009; 9:4992–4995

    Article  PubMed  CAS  Google Scholar 

  153. Sharma HS, Ali SF, Tian ZR, Hussain SM, Schlager JJ, Sjöquist P-O, Sharma A, Muresanu DF. Chronic treatment with nanoparticles exacerbate hyperthermia induced blood-brain barrier breakdown, cognitive dysfunction and brain pathology in the rat. Neuroprotective Effects of Nanowired-Antioxidant Compound H-290/51. J Nanosci Nanotechnol 2009; 9:5073–5090

    Article  PubMed  CAS  Google Scholar 

  154. Sharma S, Ali SF, Hussain SM, Schlager JJ, Sharma A. Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol 2009; 9:5055–5072

    Article  PubMed  CAS  Google Scholar 

  155. Sharma HS, Ali S, Tian ZR, Patnaik R, Patnaik S, Lek P, Sharma A, Lundstedt T. Nano-drug delivery and neuroprotection in spinal cord injury. J Nanosci Nanotechnol 2009; 9:5014–5037. Review

    Google Scholar 

  156. Sharma HS, Patnaik R, Sharma A, Sjöquist P-O, Lafuente, LV. Silicon Dioxide Nanoparticles (SiO2, 40–50 nm) Exacerbate pathophysiology of traumatic spinal cord injury and deteriorate functional outcome in the rat. An experimental study using pharmacological and morphological approaches. J Nanosci Nanotechnol 2009; 9:4970–4980

    Article  PubMed  CAS  Google Scholar 

  157. Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med 2000; 57:685–691. [PubMed]

    Google Scholar 

  158. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001; 175:191–199

    Article  PubMed  CAS  Google Scholar 

  159. Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004; 4(1):11–18

    Article  CAS  Google Scholar 

  160. Joo SH, Feitz AJ, Waite TD. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zerovalent iron. Environ Sci Technol 2004; 38:2242–2247

    Article  PubMed  CAS  Google Scholar 

  161. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111:455–460

    Article  PubMed  CAS  Google Scholar 

  162. Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in brain of juvenile largemouth bass. Environ Health Perspect 2004; 112:1058–1062

    Article  PubMed  CAS  Google Scholar 

  163. Sayes C, Fortner J, Guo W, Lyon D, Boyd AM, Ausman KD, et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett 2004; 4:1881–1887

    Article  CAS  Google Scholar 

  164. Shvedova AA, Kisin ER, Murray A, Kommineni C, Vallyathan V, Castranova V. Pro/antioxidant status in murine skin following topical exposure to cumene hydroperoxide throughout the ontogeny of skin cancer. Biochemistry (Mosc) 2004 Jan; 69(1):23–31

    Article  CAS  Google Scholar 

  165. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005 Nov; 289(5):L698–L708

    Article  PubMed  CAS  Google Scholar 

  166. Sharma HS, Sjöquist PO, Ali SF. Drugs of abuse-induced hyperthermia, blood-brain barrier dysfunction and neurotoxicity: neuroprotective effects of a new antioxidant compound H-290/51. Curr Pharm Des 2007; 13(18):1903–1923. Review

    Google Scholar 

  167. Sharma HS, Sjoquist PO, Alm P. A new antioxidant compound H-290151 attenuates spinal cord injury induced expression of constitutive and inducible isoforms of nitric oxide synthase and edema formation in the rat. Acta Neurochir Suppl 2003; 86:415–420

    Article  PubMed  CAS  Google Scholar 

  168. Sharma HS, Gordh T, Wiklund L, Mohanty S, Sjoquist PO. Spinal cord injury induced heat shock protein expression is reduced by an antioxidant compound H-290/51. An experimental study using light and electron microscopy in the rat. J Neural Transm 2006 Apr; 113(4):521–536

    Article  PubMed  CAS  Google Scholar 

  169. Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 2006 May; 78(1):7–14

    Article  PubMed  CAS  Google Scholar 

  170. Plotkin M, Gneveckow U, Meier-Hauff K, Amthauer H, Feussner A, Denecke T, Gutberlet M, Jordan A, Felix R, Wust P. 18F-FET PET for planning of thermotherapy using magnetic nanoparticles in recurrent glioblastoma. Int J Hyperthermia 2006 Jun; 22(4):319–325

    Article  PubMed  CAS  Google Scholar 

  171. Inoue K, Takano H, Yanagisawa R, Hirano S, Sakurai M, Shimada A, Yoshikawa T. Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ Health Perspect 2006 Sep; 114(9):1325–1330

    Article  PubMed  CAS  Google Scholar 

  172. Sharma H S, Sjöquist P-O, Westman J. Pathophysiology of the blood-spinal cord barrier in spinal cord injury. Influence of a new antioxidant compound H-290/51. In: Kobiler D, Lustig S, Shapra S (eds) Blood-Brain Barrier. Drug Delivery and Brain Pathology, Kluwer Academic/Plenum Publishers, New York, 2001; pp. 401–416

    Chapter  Google Scholar 

  173. MacNee W, Donaldson K. How can ultrafine particles be responsible for increased mortality? Monaldi Arch Chest Dis 2000 Apr; 55(2):135–139. Review

    Google Scholar 

  174. Sharma HS, Olsson Y, Nyberg F. Influence of dynorphin A antibodies on the formation of edema and cell changes in spinal cord trauma. Prog Brain Res 1995; 104:401–416. Review

    Article  PubMed  CAS  Google Scholar 

  175. Sharma HS, Westman J, Olsson Y, Alm P. Involvement of nitric oxide in acute spinal cord injury: an immunocytochemical study using light and electron microscopy in the rat. Neurosci Res 1996 Mar; 24(4):373–384

    Article  PubMed  CAS  Google Scholar 

  176. Faden AI. Opioid and nonopioid mechanisms may contribute to dynorphin’s pathophysiological actions in spinal cord injury. Ann Neurol 1990 Jan; 27(1):67–74

    Article  PubMed  CAS  Google Scholar 

  177. Sharma HS, Westman J, Nyberg F. Topical application of 5-HT antibodies reduces edema and cell changes following trauma of the rat spinal cord. Acta Neurochir Suppl 1997; 70:155–158

    PubMed  CAS  Google Scholar 

  178. Sharma HS, Patnaik R, Patnaik S, Mohanty S, Sharma A, Vannemreddy P. Antibodies to serotonin attenuate closed head injury induced blood brain barrier disruption and brain pathology. Ann NY Acad Sci 2007 Dec; 1122:295–312

    Article  PubMed  CAS  Google Scholar 

  179. Sharma HS, Winkler T, Stålberg E, Gordh T, Alm P, Westman J. Topical application of TNF-alpha antiserum attenuates spinal cord trauma induced edema formation, microvascular permeability disturbances and cell injury in the rat. Acta Neurochir Suppl 2003; 86:407–413

    Article  PubMed  CAS  Google Scholar 

  180. Wahl M, Unterberg A, Baethmann A, Schilling L. Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema. J Cereb Blood Flow Metab 1988 Oct; 8(5):621–634. Review

    Google Scholar 

  181. Olsson Y, Sharma HS, Pettersson CA. Effects of p-chlorophenylalanine on microvascular permeability changes in spinal cord trauma. An experimental study in the rat using 131I-sodium and lanthanum tracers. Acta Neuropathol 1990; 79(6):595–603

    Article  PubMed  CAS  Google Scholar 

  182. Sharma HS, Westman J, Olsson Y, Johansson O, Dey PK. Increased 5-hydroxytryptamine immunoreactivity in traumatized spinal cord. An experimental study in the rat. Acta Neuropathol 1990; 80(1):12–17

    Article  PubMed  CAS  Google Scholar 

  183. Sharma HS, Olsson Y. Edema formation and cellular alterations following spinal cord injury in the rat and their modification with p-chlorophenylalanine. Acta Neuropathol 1990; 79(6):604–610

    Article  PubMed  CAS  Google Scholar 

  184. Sharma HS, Olsson Y, Cervós-Navarro J. p-Chlorophenylalanine, a serotonin synthesis inhibitor, reduces the response of glial fibrillary acidic protein induced by trauma to the spinal cord. An immunohistochemical investigation in the rat. Acta Neuropathol 1993; 86(5):422–427

    Article  PubMed  CAS  Google Scholar 

  185. Sharma HS Pathophysiology of the blood-spinal cord barrier in traumatic injury. In: Sharma HS, Westman J (eds) The Blood-Spinal Cord and Brain Barriers in Health and Disease, Elsevier Academic Press, San Diego, 2004; pp. 437–518

    Google Scholar 

  186. Sharma HS, Alm P, Westman J. Nitric oxide and carbon monoxide in the brain pathology of heat stress. Prog Brain Res 1998; 115:297–333. Review

    Google Scholar 

  187. Sharma HS, Nyberg F, Thörnwall M, Olsson Y. Met-enkephalin-Arg6-Phe7 in spinal cord and brain following traumatic injury to the spinal cord: influence of p-chlorophenylalanine. An experimental study in the rat using radioimmunoassay technique. Neuropharmacology 1993 Jul; 32(7):711–717

    Article  PubMed  CAS  Google Scholar 

  188. Sharma HS, Olsson Y, Westman J. A serotonin synthesis inhibitor, p-chlorophenylalanine reduces the heat shock protein response following trauma to the spinal cord: an immunohistochemical and ultrastructural study in the rat. Neurosci Res 1995 Jan; 21(3):241–249

    Article  PubMed  CAS  Google Scholar 

  189. Sharma HS, Olsson Y, Nyberg F, Dey PK. Prostaglandins modulate alterations of microvascular permeability, blood flow, edema and serotonin levels following spinal cord injury: an experimental study in the rat. Neuroscience 1993 Nov; 57(2):443–449

    Article  PubMed  CAS  Google Scholar 

  190. Winkler T, Sharma HS, Stålberg E, Olsson Y. Indomethacin, an inhibitor of prostaglandin synthesis attenuates alteration in spinal cord evoked potentials and edema formation after trauma to the spinal cord: an experimental study in the rat. Neuroscience 1993 Feb; 52(4):1057–1067

    Article  PubMed  CAS  Google Scholar 

  191. Sharma HS, Olsson Y, Cervós-Navarro J. Early perifocal cell changes and edema in traumatic injury of the spinal cord are reduced by indomethacin, an inhibitor of prostaglandin synthesis. Experimental study in the rat. Acta Neuropathol 1993; 85(2):145–153

    Article  PubMed  CAS  Google Scholar 

  192. Sharma HS, Westman J. Prostaglandins modulate constitutive isoform of heat shock protein (72 kD) response following trauma to the rat spinal cord. Acta Neurochir Suppl 1997; 70:134–137

    PubMed  CAS  Google Scholar 

  193. Ray SK, Banik NL. Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2003 Jun; 2(3):173–189. Review

    Google Scholar 

  194. Sharma HS, Drieu K, Alm P, Westman J. Role of nitric oxide in blood-brain barrier permeability, brain edema and cell damage following hyperthermic brain injury. An experimental study using EGB-761 and Gingkolide B pretreatment in the rat. Acta Neurochir Suppl 2000; 76:81–86

    PubMed  CAS  Google Scholar 

  195. Sharma HS, Drieu K, Westman J. Antioxidant compounds EGB-761 and BN-52021 attenuate brain edema formation and hemeoxygenase expression following hyperthermic brain injury in the rat. Acta Neurochir Suppl 2003; 86:313–319

    Article  PubMed  CAS  Google Scholar 

  196. Olesen SP. An electrophysiological study of microvascular permeability and its modulation by chemical mediators. Acta Physiol Scand Suppl 1989; 579:1–28

    PubMed  CAS  Google Scholar 

  197. Kiyatkin EA, Sharma HS. Permeability of the blood-brain barrier depends on brain temperature. Neuroscience 2009 Jul 7; 161(3):926–939. Epub 2009 Apr 9

    Google Scholar 

  198. Sharma HS, Kiyatkin EA. Rapid morphological brain abnormalities during acute methamphetamine intoxication in the rat: an experimental study using light and electron microscopy. J Chem Neuroanat 2009 Jan; 37(1):18–32. Epub 2008 Aug 19

    Google Scholar 

  199. Kiyatkin EA, Brown PL, Sharma HS. Brain edema and breakdown of the blood-brain barrier during methamphetamine intoxication: critical role of brain hyperthermia. Eur J Neurosci 2007 Sep; 26(5):1242–1253

    Article  PubMed  Google Scholar 

  200. Sharma HS, Ali SF. Alterations in blood-brain barrier function by morphine and methamphetamine. Ann NY Acad Sci 2006 Aug; 1074:198–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Author’s research described here is supported by Grants from Swedish Medical Research Council (2710), Stockholm Sweden, Göran Gustafsson Foundation, Stockholm, Sweden; Alexander von Humboldt Foundation, Bonn, Germany, European Office of Aerospace Research and Development (EOARD), London Office, UK. Technical assistant of Mari-Anne Carlsson, Kerstin Flink, Ingmarie Olsson and Kerstin Rystedt are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Shanker Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sharma, H.S., Sharma, A. (2010). Breakdown of the Blood-Brain Barrier in Stress Alters Cognitive Dysfunction and Induces Brain Pathology: New Perspectives for Neuroprotective Strategies. In: Ritsner, M. (eds) Brain Protection in Schizophrenia, Mood and Cognitive Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8553-5_9

Download citation

Publish with us

Policies and ethics