Skip to main content

Multifaceted Attributes of Allelochemicals and Mechanism of Allelopathy

  • Chapter
  • First Online:
Allelopathy

Abstract

These allelochemicals are phytochemicals belonging to the class of phenolics, terpenoids, flavonoids, glucosinolates, Cyanogenic glycosides, saponins, and alkaloids that are capable of causing “allelochemical stress” on the receiver plants and influence the pattern of vegetation in a forest, agriculture fields, uncultivated open areas, and also affect crop productivity. Allelochemicals are involved in plant invasion and plant–plant communication in the rhizosphere, replant problems in orchards of peach, citrus, jackfruit, mango, etc., and exhibit selective toxicity. Allelochemicals and their analogs are used commercially as herbicide, growth promoter, and as a sweetener. Allelochemicals can affect a number of physiological actions such as alter the membrane functions, plant metabolism, photosynthesis, respiration, flowering, fruiting, seeding, and ultimately even cause death of the organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anaya AL (1999) Allelopathy as tool in the management of biotic resources. Crit Rev Plant Sci 18:697–739

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and pseudomonas sp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Barnes JP, Putnam AR (1986) Evidence for Allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci 34:384–390

    Google Scholar 

  • Barnes JP, Putnam AR, Burke AR (1986) Allelopathic effects of rye (Secale cereale L.) In: Putnam AR, Tang CS (eds) The science of allelopathy, Wiley, New York, pp 271–286

    Google Scholar 

  • Barnes JP, Putnam AR, Burke BA, Aasen AJ (1987) Isolation and characterization of allelochemicals in rye herbage. Phytochem 26:1385–1390

    Article  CAS  Google Scholar 

  • Bertin C, Weston LA, Huang T, Jander G, Owens T, Meinwald J, Schroeder FC (2007) Grass roots chemistry: meta-tyrosine, a herbicidal non-protein amino acid. PANS 104:16964–16969

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed  CAS  Google Scholar 

  • Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259–267

    PubMed  CAS  Google Scholar 

  • Blum U (1997) Benefits of citrate over EDTA for extracting phenolic acids from soils and plant debris. J Chem Ecol 23:347–362

    Article  CAS  Google Scholar 

  • Blum U (1998) Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 24:685–708

    Article  CAS  Google Scholar 

  • Blum U, Shafer SR, Lehmen ME (1999) Evidence for inhibitory interactions involving phenolic acids in field soils: concepts vs. experimental model. Crit Rev Plant Sci 18:673–693

    Article  CAS  Google Scholar 

  • Callaway RM, Harish P, Bias, Tiffany L, Perry WL, Wendy, Ridenour M, Vivanco JM. (2005) Proceedings of the 4th World Congress on Allelopathy, Wagga Wagga, Australia

    Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  PubMed  CAS  Google Scholar 

  • Chou CH (1989) Allelopathic research of subtropical vegetation in Taiwan. IV. Comparative pytotoxic nature of leachate from four subtropical grasses. J Chem Ecol 15:2149–2159

    Article  CAS  Google Scholar 

  • Chou CH (1995) Allelopathy and sustainable agriculture. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications, A.C.S. Symposium Series 582, American Chemical Society, Washington, pp 211–223

    Google Scholar 

  • Chou CH (1999) Roles of allelopathy in plant diversity and sustainable agriculture. Crit Rev Plant Sci 18:609–636

    Article  Google Scholar 

  • Chou CH, Waller GR (1989) Phytochemical ecology: allelochemicals, mycotoxins and insect pheromones and allomones, Academia Sinica Monograph Series No. 9, Acad Sinica, Taipei

    Google Scholar 

  • De Candolle MAP (1832) Physiological vegetable, vol III. Bechet Jeune Library Faculty Medicine, Paris

    Google Scholar 

  • Ding J, Sun Y, Xiao CL, Shi K, Zhou YH, Yu JQ (2007) Physiological basis of different allelopathic reactions of cucumber and fig leaf gourd plants to cinnamic acid. J Exp Bot 58:3765–3773

    Article  PubMed  CAS  Google Scholar 

  • Duke SO, Baerson SR, Pan Z, Kagan IA, Sanchez-Moreiras A, Reigosa MJ, Pedrol-Bonjoch N, Schulz M (2005) Genomic approaches to understanding allelochemical modes of action and defenses against allelochemicals. Proceedings of the 4th World Congress on Allelopathy, Wagga Wagga, Australia, pp 107–113

    Google Scholar 

  • Dullhide G, Stirling G, Nikulin A, Stirling A (1994) The role of nematodes, fungi, bacteria and abiotic factors in the ecology of apple replant problems in the granite belt of Queensland. Aus J Exp Agric 34:1177–1182

    Article  Google Scholar 

  • Einhellig FA (1995) Mechanism of action of allelochemicals in allelopathy. In: Inderjit Dakshini KMM, Einhellig FA (eds) Allelopathy, organisms, processes and applications, American Chemical Symposium Series No. 582. American Chemical Society, Washington, pp 96–116

    Google Scholar 

  • Einhellig FA, Rasmussen JA, Hejl AM, Souza IF (1993) Effects of root exudates sorgoleone on photosynthesis. J Chem Ecol 19:369–375

    Article  CAS  Google Scholar 

  • Einhellig FA, Rice EL, Risser PG, Wender SH (1970) Effects of scopoletin on growth, CO2 exchangeb rates and concentration of scopoletin, scopolin, and chlorogenic acids in tobacco, sunflower, and pigweed. Bull Torrey Bot Club 97:22–33

    Article  CAS  Google Scholar 

  • Ellis JE, Say AEM (1991) Allelopathic effects of alfalfa plant residue on emergence and growth of cucumber seedlings. HortSci 26:368–370

    Google Scholar 

  • Fujii Y, Golisz A, Furubayashi A, Iqbal Z, Nasir H (2005) Allelochemicals from buckwheat and tartary buckwheat and practical weed control in the field. Proceedings of the 20th Asian-Pacific Weed Science Society Conference, Ho Chi Minh City, pp 227–233

    Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inge D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    Article  PubMed  CAS  Google Scholar 

  • Gentle CB, Duggin JA (1997) Allelopathy as a competitive strategy in persistant thickets of Lantana camara L. in three Australian forest communities. Plant Ecol 132:85–95

    Article  Google Scholar 

  • Golisz A, Gawronska H, Gawronski SW (2007a) Influence of buckwheat allelochemicals on crops and weeds. Allelopathy J 19:337–350

    Google Scholar 

  • Golisz A, Lata B, Gawronski SW, Fujii Y (2007b) Specific and total activities of allelochemicals identified in buckwheat. Weed Biol Manag 7:164–168

    Article  CAS  Google Scholar 

  • Golisz A, Sugano M, Fujii Y (2008) Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. J Exp Bot 59:3099–3109

    Article  PubMed  CAS  Google Scholar 

  • Grodzinsky AM (2006) Allelopathy in soil sickness. Scientific Publishers, Jodhpur

    Google Scholar 

  • Grover A, Kapoor A, Lakshmi OS, Agarwal S, Sahi C, Katiyar-Agarwal S, Agarwal M, Dubey H (2001) Understanding molecular aspects of the plant abiotic stress responses. Curr Sci 80:206–216

    CAS  Google Scholar 

  • Hassan MS, Alsaadawi IS, El-Behadli A (1989) Citrus replant problem in Iraq.11 Possible role of allelopathy. Plant Soil 116:157–160

    Article  Google Scholar 

  • Hoagland RE (1990) Microbes and Microbial products as herbicides: an overview. In: Hoagland RE (ed) Microbes and microbial products as herbicides, A.C.S. Symposium Series 439. Washington. American Chemical Society, pp 2–52

    Google Scholar 

  • Hong Bi H, Zeng RS, Su LM, An M, Luo SM (2007) Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol 33:1089–1103

    Article  Google Scholar 

  • Inderjit DakshiniKMM, Einhellig FA (1995) Allelopathy: organisms, processes and applications. American Chemical Society, Washington

    Google Scholar 

  • Inderjit KeatingKI (1999) Allelopathy: principles, procedures, processes and promises for biological control. Adv Agron 67:141–231

    Article  CAS  Google Scholar 

  • Iqbal Z, Golisz A, Furubayashi A, Nasir H, Fuji Y (2005) Allelopathic potential of buckwheat Fourth World Congress on Allelopathy. Wagga Wagga, Australia

    Google Scholar 

  • Isojima S, Iqbal Z, Koizumi A, Fujii Y (2000) Allelopathy of Fagopyrum esculentum: analysis of allelochemicals. J Weed Sci Technol 45:92–93

    Article  Google Scholar 

  • Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88:1771–1780

    CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K (2007) Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Nat Acad Sci USA 104:672–677

    Article  PubMed  CAS  Google Scholar 

  • Li HH, Nishimura H, Hasegawa K, Mizutani J (1993) Some physiological effects and the possible mechanism of action of juglone in plants. Weed Res 38:214–222

    CAS  Google Scholar 

  • Macias FA (1995) Allelopathy in search for natural herbicide models. In: (Inderjit, Darshini KMM Ellinhellig FA (eds) Allelopathy: organisms, processes, and applications, American Chemical Society, Washington, pp 310–329

    Google Scholar 

  • Macias FA, Oliver RM, Simonet AM, Galindo JCG (1998) What are allelochemicals?. Proceedings of the Workshop on Allelopathy in Rice, 25–27 Nov 1996, IRRI, Manilla, pp 69–79

    Google Scholar 

  • Martin JP, Haider K (1976) Decomposition of specifically carbon-14 labelled ferulic acid: Free and linked into model humic acid type polymers. Soil Sci Soc Am J 40:377–380

    Article  CAS  Google Scholar 

  • Meehan S (2000) The fate of Cyanide in groundwater at gasworks sites in South—Eastern Australia. Thesis (Doctor en Biologre) Melbourne, Australia: The University of Melbourne. Consulatado Mayo 25. Available via: http://eprints.Unimelb.edu.au/archive/0000029

  • Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Nair MG, Whiteneck CJ, Putnam AR (1990) 2,2’-oxo-1,1’-azobenzene, a microbially transformed allelochemical from 2,3-benzoxazolinone.I. J Chem Ecol 16:353–364

    Article  CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Parvoli GR (2000) Soil Organic matter mobilization by root exudates. Chemosphere 5:653–658

    Article  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molec Biol 55:327–342

    Article  CAS  Google Scholar 

  • Neill RL, Rice EL (1971) Possible role of Ambrosia psilostachya on patterning and succession in old-fields. Am Midl Nat 86:344–357

    Article  Google Scholar 

  • Niemeyer HM (1998) Hydroxamic acids (4-hydroxyl-1,4-benzoxazin-3-ones), defence chemicals in the graminae. Phytochem 27:3349–3358

    Article  Google Scholar 

  • Ortega RC, Anaya AS, Ramos L (1988) Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J Chem Ecol 14:71–86

    Article  Google Scholar 

  • Pellissier F, Sonto XC (1999) Allelopathy in Northern temperate and boreal seminatural woodland. Crit Rev Plant Sci 18:637–652

    Article  Google Scholar 

  • Putnam AR, Weston LA (1986) Adverse impacts of allelopathy in agricultural systems. In: Putnam AR, Tang CS (eds) The science of allelopathy. Wiley, New York, pp 43–56

    Google Scholar 

  • Rice EL (1974) Allelopathy. Academic Press Orlando, Orlando

    Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, Orlando

    Google Scholar 

  • Rice EL (1986) Allelopathic growth stimulation. In: Putnam AR, Tang CS (eds) The science of allelopathy. Willey, New York, pp 23–42

    Google Scholar 

  • Rice EL (1995) Biological control of weeds and plant diseases: advances in applied allelopathy. University of Olklahoma Press, Norman

    Google Scholar 

  • Schreiner O, Reed HS (1907) The production of deleterious excretions by roots. Bull Torrey Bot Club 34:279–303

    Article  Google Scholar 

  • Schreiner O, Reed HS (1908) The toxic action of certain organic plant constituents. Bot Gazette 45:73–102

    Article  CAS  Google Scholar 

  • Selmar D, Lieberei Biehl B (1988) Mobilization and utilization of cyanogenic glucosides: the Linustatin Pathway. Plant Physiol 86:711–716

    Article  PubMed  CAS  Google Scholar 

  • Shilling DG, Libel RA, Worsham AD (1985) Biochemical interaction among plants. In: Thompson AC (ed) The chemistry of allelopathy, ACS Symposium Series American Chemical Society, Washington 268:243–271

    Google Scholar 

  • Singh AK (2008) Natural plant growth regulator “Caliterpene”: Scope and opportunities.http://kr.cimap.res.in/bitstream/123456789/90/1/NIM%202008-07.pdf

  • Stickney JS, Hoy PR (1881) Toxic action of black walnut. Trans Wis State Hortic Soc 11:166–167

    Google Scholar 

  • Stiles LH, Leather GR, Chen PK (1994) Effects of two sesquiterpene lactones isolated from Artemisia annua on physiology of Lemna minor. J Chem Ecol 20:969–978

    Article  CAS  Google Scholar 

  • Stutte GW (1999) Phytochemicals, implications for long-duration space missions. In: Cutler HG, Cutler SJ (eds) Biologically active natural products: agrochemicals. C.R.C. Press, Boca Raton, pp 275–286

    Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Massachussetds, Sinaver Associates, Inc, Sunderland

    Google Scholar 

  • Taylor JE, Hatcher PE, Paul ND (2004) Crosstalk between plant responses to pathogens and herbivores: a view from the outside in. J Exp Bot 55:159–168

    Article  PubMed  CAS  Google Scholar 

  • Thelan GC, Vivanco JM, Newingham B, Good W, Bais HP, Landres P, Caesar A, Callaway RM (2000) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol Letter 8:209–217

    Article  Google Scholar 

  • Waller GR (1987) Allelochemicals; role in agriculture and forestry, American Chemical Society, Washington

    Google Scholar 

  • Wang TSC, Kao MM, Li BW (1984) The exploration and improvement of the yield of monoculture sugarcane in Taiwan. In: Chou EHT (ed) Tropical plants. ROC, Academia Sinica, Taiwan, pp 1–9

    Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Wardle DA, Nilson MC (1997) Microbe-Plant competition, allelopathy and artic plants. Oecologia 109:291–293

    Article  Google Scholar 

  • Weston LA (1996) Utilization of allelopathy for weed management in agro ecosystems. Agron J 88:860–866

    Article  Google Scholar 

  • Wu H, Pratley H, Lemerle HT (1999) Crop cultivars with allelopathic capability. Weed Res 39:171–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Ambika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ambika, S.R. (2013). Multifaceted Attributes of Allelochemicals and Mechanism of Allelopathy. In: Cheema, Z., Farooq, M., Wahid, A. (eds) Allelopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_16

Download citation

Publish with us

Policies and ethics