Skip to main content

The Role of Plant Growth Promoting Rhizobacteria in Sustainable and Low-Input Graminaceous Crop Production

  • Chapter
  • First Online:
Plant Growth and Health Promoting Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 18))

Abstract

Plant growth stimulating rhizobacteria that improve the yield of graminaceous crops have been studied since the 1930s. Increases in crop yield have often been inconsistent, reflecting a lack of understanding by which PGPR exert their effects. Many PGPR are able to fix N2, which was initially assumed to boost crops by supplementing soil N. Subsequently, it became clear that for most free-living PGPR other mechanisms affecting root development and nutrient uptake can explain the increased crop yields. Endophytic bacteria have demonstrated some potential to contribute to the N budget of certain graminaceous crops but require more robust assessment of their potential. Here, we review the current state of our understanding of PGPR in graminaceous crop cultivation, identifying their potential contribution to more sustainable agricultural practices but also highlighting issues that need to be addressed before this technology can be appropriately assessed as a replacement for inorganic N addition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  PubMed  CAS  Google Scholar 

  • Akhtar MJ, Asghar HN, Shahzad K, Arshad M (2009) Role of plant growth promoting rhizobacteria applied in combination with compost and mineral fertilizers to improve growth and yield of wheat (Triticum aestivum L.). Pak J Bot 41:381–390

    Google Scholar 

  • Albareda M, Rodriguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Ali S, Hamid N, Rasul G, Malik KA (1995) Use of biofertilizers to enhance rice yield, nitrogen uptake and fertilizer-N use efficiency in saline soils. Pak J Bot 27:275–281

    Google Scholar 

  • Andrews M, James EK, Cummings SP, Zavalin AA, Vinogradova LV, McKenzie BA (2003) Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis 35:209–229

    CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252

    CAS  Google Scholar 

  • Bairamov LE, Vinogradova LV, Zavalin AA (2001) Nitrogen nutrition and productivity of barley as conditioned by the application of associative diazotrophs. Asp Appl Biol 63:135–139

    Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Dobereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Bashan Y, Bustillos JJ, Leyva LA, Hernandez JP, Bacilio M (2006) Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soil 42:279–285

    Article  CAS  Google Scholar 

  • Baudoin E, Nazaret S, Mougel C, Ranjard L, Moenne-Loccoz Y (2009) Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol Biochem 41:409–413

    Article  CAS  Google Scholar 

  • Bergsma-Vlami M, Prins ME, Raaijmakers JM (2005) Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiol Ecol 52:59–69

    Article  PubMed  CAS  Google Scholar 

  • Boddey RM, Urquiaga S, Reis V, Dobereiner J (1991) Biological nitrogen-fixation associated with sugar cane. Plant Soil 137:111–117

    Article  Google Scholar 

  • Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dye F (2008) A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 159:699–708

    Article  PubMed  CAS  Google Scholar 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697

    Article  CAS  Google Scholar 

  • Brown SP, Le Chat L, De Paepe M, Taddei F (2006) Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr Biol 16:2048–2052

    Article  PubMed  CAS  Google Scholar 

  • Cakmakci R, Donmez MF, Erdogan U (2007) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For 31:189–199

    CAS  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Article  CAS  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30

    Article  CAS  Google Scholar 

  • Cooper R (1959) Bacterial fertilisers in the Soviet Union. Soil Fertil 22:327–333

    Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agri Ecosys Environ 102:279–297

    Article  Google Scholar 

  • Cummings S, Andrews M (2003) Use of specific N2 fixing genotypes as crop inoculants: progress made and potential for stressful soil environments. In: Tiezzi E, Brebbia CA, Usó JL (eds) Ecosystems and sustainable development, vol 2. WIT press, Southampton, pp 755–765

    Google Scholar 

  • El Zemrany H, Cortet J, Lutz MP, Chabert A, Baudoin E, Haurat J, Maughan N, Felix D, Defago G, Bally R, Moenne-Loccoz Y (2006) Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation. Soil Biol Biochem 38:1712–1726

    Article  CAS  Google Scholar 

  • Fatima Z, Saleemi M, Zia M, Sultan T, Aslam M, Riaz Ur R, Chaudhary MF (2009) Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. Afr J Biotechnol 8:219–225

    CAS  Google Scholar 

  • Fischer SE, Fischer SI, Magris S, Mori GB (2007) Isolation and characterization of bacteria from the rhizosphere of wheat. World J Microbiol Biotechol 23:895–903

    Article  CAS  Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The Gram-positive side of plant-microbe interactions. Environ Microbiol 12(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Germida JJ, Walley FL (1996) Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol Fertil Soil 23:113–120

    Article  CAS  Google Scholar 

  • Hazell P, Wood S (2008) Drivers of change in global agriculture. Philos Trans R Soc B-Biol Sci 363:495–515

    Article  Google Scholar 

  • Hossain MS, Martensson A (2008) Potential use of Rhizobium spp. to improve fitness of non-nitrogen-fixing plants. Acta Agric Scand B-Soil Plant Sci 58:352–358

    Google Scholar 

  • Humphry DR, Andrews M, Santos SR, James EK, Vinogradova LV, Perin L, Reis VM, Cummings SP (2007) Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertiliser on graminaceous crops in Russia. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 91:105–113

    Article  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178

    Article  PubMed  CAS  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microbe Interact 15:233–242

    Article  PubMed  CAS  Google Scholar 

  • Jaderlund L, Arthurson V, Granhall U, Jansson JK (2008) Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett 287:174–180

    Article  PubMed  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • Jenkinson DS (2001) The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228:3–15

    Article  CAS  Google Scholar 

  • Karnwal A (2009) Production of indole acetic acid by fluorescent Pseudomonas in the presence of L-tryptophan and rice root exudates. J Plant Pathol 91:61–63

    CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  PubMed  CAS  Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc B-Biol Sci 363:685–701

    Article  CAS  Google Scholar 

  • Kitzes J, Wackernagel M, Loh J, Peller A, Goldfinger S, Cheng D, Tea K (2008) Shrink and share: humanity’s present and future Ecological Footprint. Philos Trans R Soc B-Biol Sci 363:467–475

    Article  Google Scholar 

  • Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugata: a suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100

    Article  CAS  Google Scholar 

  • Kurek E, Jaroszuk-Scisel J (2003) Rye (Secale cereale) growth promotion by Pseudomonas fluorescens strains and their interactions with Fusarium culmorum under various soil conditions. Biol Control 26:48–56

    Article  Google Scholar 

  • Lawongsa P, Boonkerd N, Wongkaew S, O’Gara F, Teaumroong N (2008) Molecular and phenotypic characterization of potential plant growth-promoting Pseudomonas from rice and maize rhizospheres. World J Microbiol Biotechnol 24:1877–1884

    Article  Google Scholar 

  • Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov., sp nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Mazzola M, Funnell DL, Raaijmakers JM (2004) Wheat cultivar-specific selection of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microb Ecol 48:338–348

    Article  PubMed  CAS  Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117

    Article  PubMed  CAS  Google Scholar 

  • Miller FP (2008) After 10,000 years of agriculture, whither agronomy? Agron J 100:22–34

    Article  Google Scholar 

  • Mirza MS, Mehnaz S, Normand P, Prigent-Combaret C, Moenne-Loccoz Y, Bally R, Malik KA (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soil 43:163–170

    Article  CAS  Google Scholar 

  • Montanez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2009) Biological nitrogen fixation in maize (Zea mays L.) by N-15 isotope-dilution and identification of associated culturable diazotrophs. Biol Fertil Soil 45:253–263

    Article  CAS  Google Scholar 

  • Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park KD, Son CY, Sa T, Caballero-Mellado JC (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286

    Article  PubMed  CAS  Google Scholar 

  • Naveed M, Khalid M, Jones DL, Ahmad R, Zahir ZA (2008a) Relative efficacy of Pseudomonas spp., containing ACC-Deaminase for improving growth and yield of maize (Zea mays L.) in the presence of organic fertilizer. Pak J Bot 40:1243–1251

    Google Scholar 

  • Naveed M, Zahir ZA, Khalid M, Asghar HN, Akhtar MJ, Arshad M (2008b) Rhizobacteria containing ACC-Deaminase for improving growth and yield of wheat under fertilized conditions. Pak J Bot 40:1231–1241

    Google Scholar 

  • Neal JL, Atkinson TG, Larson RI (1970) Changes in rhizosphere microflora of spring wheat induced by disomic substitution of a chromosome. Can J Microbiol 16:153–158

    Article  PubMed  Google Scholar 

  • Nogueira ED, Vinagre F, Masuda HP, Vargas C, de Padua VLM, da Silva FR, dos Santos RV, Baldani JI, Cavalcanti P, Ferreira G, Hemerly AS (2001) Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genet Mol Biol 24:199–206

    Article  CAS  Google Scholar 

  • Okubara PA, Bonsall RF (2008) Accumulation of Pseudomonas-derived 2, 4-diacetylphloroglucinol on wheat seedling roots is influenced by host cultivar. Biol Control 46:322–331

    Article  CAS  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  PubMed  CAS  Google Scholar 

  • Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125:25–35

    Article  PubMed  CAS  Google Scholar 

  • Pedraza RO, Bellone CH, de Bellone S, Sorte PMB, Teixeira KRD (2009) Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. Eur J Soil Biol 45:36–43

    Article  CAS  Google Scholar 

  • Peoples MB, Ladha JK, Herridge DF (1995) Enhancing legume N2 fixation through plant and soil management. Plant Soil 174:83–101

    Article  CAS  Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B-Biol Sci 363:447–465

    Article  Google Scholar 

  • Principe A, Alvarez F, Castro MG, Zachi L, Fischer SE, Mori GB, Jofre E (2007) Biocontrol and PGPR features in native strains isolated from saline soils of Argentina. Curr Microbiol 55:314–322

    Article  PubMed  CAS  Google Scholar 

  • Reis VM, Olivares FL, Dobereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:401–405

    Article  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sala VMR, Cardoso E, de Freitas JG, da Silveira APD (2007) Wheat genotypes response to inoculation of diazotrophic bacteria in field conditions. Pesq Agropec Bras 42:833–842

    Article  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  PubMed  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2008) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 55:130–140

    Article  PubMed  CAS  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  PubMed  CAS  Google Scholar 

  • Smil V (2001) Enriching the earth. MIT Press, Cambridge, MA

    Google Scholar 

  • Strigul NS, Kravchenko LV (2006) Mathematical modeling of PGPR inoculation into the rhizosphere. Environ Model Soft 21:1158–1171

    Article  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005) Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World J Microbiol Biotechol 21:941–945

    Article  Google Scholar 

  • Van VT, Berge O, Ke SN, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284

    Article  CAS  Google Scholar 

  • Vargas C, De Padua VLM, Nogueira ED, Vinagre F, Masuda HP, Da Silva FR, Baldani JI, Ferreira PCG, Hemerly AS (2003) Signaling pathways mediating the association between sugarcane and endophytic diazotrophic bacteria: a genomic approach. Symbiosis 35:159–180

    CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, van Loon LC, Bakker P (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 69:3110–3118

    Article  PubMed  CAS  Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  PubMed  CAS  Google Scholar 

  • Zakria M, Njoloma J, Saeki Y, Akao S (2007) Colonization and nitrogen-fixing ability of Herbaspirillum sp strain B501 gfp1 and assessment of its growth-promoting ability in cultivated rice. Microbes Environ 22:197–206

    Article  Google Scholar 

  • Zavalin AA, Vinogradova LV, Dukhanina TM, Vaulin AV, Christotin MV, Sologub DB, Gabibov M, Lekomtsev PV, Pasynkov AV (2001) Geographical regularities of effect of inoculation with associative diazotrophs on the productivity of cereals. Aspects Appl Biol 63:123–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Cummings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cummings, S.P., Orr, C. (2010). The Role of Plant Growth Promoting Rhizobacteria in Sustainable and Low-Input Graminaceous Crop Production. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_13

Download citation

Publish with us

Policies and ethics