Skip to main content

Magnetic Force Microscopy Studies of Magnetic Features and Nanostructures

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology 2

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The study of small magnetic features and nanostructures has attracted much attention due to interest in both technological applications and fundamental research in micromagnetism. For their characterization, a visualization technique with high lateral resolution is required. Among the wealth of techniques, magnetic force microscopy (MFM) has become a powerful tool for visualizing submicron-sized domain structures. This is mainly due to its ease of use without any specific sample preparation and the high lateral resolution of a few 10 nm. MFM is a sensitive and useful technique for direct observation of magnetic domains and their magnetic behavior, which can help elucidate properties of magnetic films and nanostructures. This chapter reviews MFM techniques and applications that demonstrate the achievement of MFM in magnetic materials and nanoscience research. The review focuses on the current MFM study involved with magnetic features and nanostructures, including magnetic interactions in nanostructured thin films and nanomagnetic patterns with special emphasis on the recent research in micromagnetism acquiring from our SPM laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Martin, H. Wickramasinghe, Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987)

    Article  Google Scholar 

  2. J. Saenz, N. Garcia, P. Grutter, E. Meyer, H. Heinzelmann, R. Wiesendanger, L. Rosenthaler, H. Hidber, H. Guntherodt, Magnetic domain structure by measuring magnetic forces. J. Appl. Phys. 62, 4293–4295 (1987)

    Article  Google Scholar 

  3. G. Binnig, C. Quate, C.h. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986)

    Google Scholar 

  4. H. Mamin, D. Rugar, J. Stern, B. Teris, S. Lambert, Force microscopy of magnetization patterns in longitudinal recording media. Appl. Phys. Lett. 53, 1563 (1988)

    Article  Google Scholar 

  5. H. Mamin, D. Rugar, J. Stern, R. Fontana, P. Kasiraj, Magnetic force microscopy of thin permalloy films. Appl. Phys. Lett. 55, 318 (1989)

    Article  CAS  Google Scholar 

  6. P. Grutter, A. Wadas, E. Meyer, H. Hidber, H. Guntherodt, Magnetic force microscopy of CoCr thin film. J. Appl. Phys. 66, 6001 (1989)

    Article  Google Scholar 

  7. A. Wadas, P. Grutter, H. Guntherodt, Analysis of magnetic bit pattern by magnetic force microscopy. J. Vac. Sci. Technol. A8(1), 416 (1990)

    Google Scholar 

  8. D. Rugar, H. Mamin, P. Guethner, S. Lambert, J. Stern, I. McFadyen, T. Yogi, Magnetic force microscopy: general principles and application to longitudinal recording media. J. Appl. Phys. 68, 1169 (1990)

    Article  CAS  Google Scholar 

  9. U. Hartmann, Magnetic force microscopy and its application to longitudinal thin films. Adv. Mater. 2(11), 550 (1990)

    Google Scholar 

  10. C. Schoenenberger, S. Alvarado, S. Lambert, I. Sanders, Magnetic force microscopy and its applications to longitudinal thin films. J. Magn. Magn. Mater. 93, 123 (1991)

    Article  CAS  Google Scholar 

  11. S. Mueller-Pfiffer, M. Schneider, W. Zinn, Imaging of magnetic domain walls in iron with a magnetic force microscope: a numerical study. Phys. Rev. B. 49(22), 15745 (1994)

    Google Scholar 

  12. M. Lederman, S. Schultz, M. Ozaki, Measurement of the dynamics of the magnetization reversal in individual single-domain ferromagnetic particles. Phys. Rev. Lett. 73, 1986 (1994)

    Article  CAS  Google Scholar 

  13. S. Gider, J. Shi, D. Awschalom, P. Hopkins, K. Campman, A. Gossard, A. Kent, S. Molnar, Imaging and magnetometry of switching in nanometer-scale iron particles. Appl. Phys. Lett. 69, 3269 (1996)

    Article  CAS  Google Scholar 

  14. S. Foss, R. Proksch, E. Dahlberg, B. Moskowitz, B. Walsh, Localized micromagnetic perturbation of domain walls in magnetite using a magnetic force microscopy. Appl. Phys. Lett. 69, 4326 (1996)

    Article  Google Scholar 

  15. H. Hug, B. Stiefel, A. Moser, I. Parashikov, A. Klicznik, D. Lipp, H. Guntherodt, G. Bochi, D. Paul, R. O’Handley, Magnetic domain structure in ultrathin Cu/Ni/Cu/Si(001) films. J. Appl. Phys. 79, 5609 (1996)

    Article  CAS  Google Scholar 

  16. Digital Instruments Support Note No. 229. Rev. B: Magnetic force microscopy. Digital Instruments, Inc. Santa Barbara, CA. 1–17, (1996)

    Google Scholar 

  17. L. Billiard, J. Miltat, A. Thiaville, S. Dubois, J. Duvail, L. Piraux, Observing magnetic nanowires by means of magnetic force microscopy. J. Magn. Magn. Mater. 190, 1 (1998)

    Article  Google Scholar 

  18. A. Fernandez, M. Gibbons, M. Wall, C. Cerjan, Magnetic domain structure and magnetization reversal in submicron-scale Co dots. J. Magn. Magn. Mater. 190, 71 (1998)

    Article  CAS  Google Scholar 

  19. U. Memmert, P. Leinenbach, J. Losch, H. Hartmann, Ultrahigh vacuum magnetic force microscopy: domain imaging on in situ grown Fe(100) thin films. J. Magn. Magn. Mater. 190, 124 (1998)

    Article  CAS  Google Scholar 

  20. T. Aign, P. Meyer, S. Lemerle, J. Jamet, J. Ferré, V. Mathet, C. Chappert, J. Gierak, C. Vieu, F. Rousseaux, H. Launois, H. Bernas, Magnetization reversal in arrays of perpendicularly magnetized ultrathin dots coupled by dipolar interaction. Phys. Rev. Lett. 81, 5656 (1998)

    Article  CAS  Google Scholar 

  21. S. Porthun, L. Abelmann, C. Lodder, Magnetic force microscopy of thin film media for high density magnetic recording. J. Magn. Magn. Mater. 182, 238 (1998)

    Article  CAS  Google Scholar 

  22. J. Wittborn, K. Rao, R. Priksch, I. Revenko, E. Dahlberg, D. Bazylinski, Magnitization reversal observation and manipulation of chains of nanoscale magnetic particles using the magnetic force microscope. Nanostruct. Mater. 12(5–8), 1149 (1999)

    Google Scholar 

  23. R. Gomez, T. Luu, A. Pak, K. Kirk, J. Chapman, Domain configurations of nanostructured Permalloy elements. J. Appl. Phys. 85, 6163 (1999)

    Article  CAS  Google Scholar 

  24. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, T. Ono, Magnetic vortex core observation in circular dots of permalloy. Science 289, 930 (2000)

    Article  CAS  Google Scholar 

  25. A. Asenjo, D. Garcia, J. Garcia, C. Prados, M. Vazquez, Magnetic force microscopy study of dense stripe domains in Fe-B/Co-Si-B multilayers and the evolution under an external applied field. Phys. Rev. B 62, 6538 (2000)

    Article  CAS  Google Scholar 

  26. J. lohau, A. Carl, S. Kirsch, E. Wassermann, Magnetization reversal and coercivity of a single-domain Co/Pt dot measured with a calibrated magnetic force microscope tip. Appl. Phys. Lett. 78, 2020 (2001)

    Google Scholar 

  27. Xiaobin-Zhu, P. Grutter, V. Metlushko, B. Ilic, Magnetic force microscopy study of electron-beam-patterned soft permalloy particles: technique and magnetization behavior. Phys. Rev. B 66(2), 024423 (2002)

    Google Scholar 

  28. J. Garcia, A. Thiaville, J. Miltat, MFM imaging of nanowires and elongated patterned elements. J. Magn. Magn. Mater. 249, 163 (2002)

    Article  CAS  Google Scholar 

  29. L. Gao, S. Liou, M. Zheng, R. Skomski, M. Yan, D. Sellmyer, Magnetic force microscopy observations of the magnetic behavior in Co-C nanodot arrays. J. Appl. Phys. 91, 7311 (2002)

    Article  CAS  Google Scholar 

  30. Xiaobin-Zhu, P. Grutter, Magnetic force microscopy studies of patterned magnetic structures. IEEE Trans. Magn. 39, 3420 (2003)

    Article  Google Scholar 

  31. O. Hellwig, T. Kirk, J. Kortright, A. Berger, E. Fullerton, A new phase diagram for layered antiferromagnetic films. Nat. Mater. 2, 112 (2003)

    Article  CAS  Google Scholar 

  32. E. Meyer, H.J. Hug, R. Bennewitz, Scanning Probe Microscopy (Springer-Verlag, Berlin/Heidelberg, 2004)

    Google Scholar 

  33. K. Sorge, A. Kashyap, R. Skomski, L. Yue, L. Gao, R. Kirby, S.H. Liou, D.J. Sellmyer, Interaction and switching behavior of anisotropic magnetic dots. J. Appl. Phys. 95(11), 7414–7416 (2004)

    Article  CAS  Google Scholar 

  34. Z.Y. Liu, L.Yue, D.J. Keavney, S. Adenwalla, Oscillations of interlayer exchange coupling in [Pt/Co]n/NiO/[CoPt]n multilayers with perpendicular anisotropy: dependence on NiO and Pt thicknesses. Phys. Rev. B 70, 224423 (2004)

    Article  Google Scholar 

  35. L. Gao, L. Yuan, L. Nicholl, R. Sabiryanov, Z.Y. Liu, S. Adenwalla, S.H. Liou, Domain structure and magnetoresistance in Ni81Fe19 zigzag wires. J. Magn. Magn. Mater. 272–276, 1301 (2004)

    Article  Google Scholar 

  36. L. Gao, D.Q. Feng, L. Yuan, T. Yokota, R. Sabirianov, S.H. Liou, M.D. Chabot, D. Porpora, J. Moreland, A study of magnetic interactions of Ni80Fe20 arrays using ultrasensitive microcantilever torque magnetometry. J. Appl. Phys. 95, 7010 (2004)

    Article  CAS  Google Scholar 

  37. Y.C. Sui, W. Liu, L.P. Yue, X.Z. Li, R. Skomski, D.J. Sellmyer, Template-mediated assembly of FePt L10 cluster under external magnetic field. J. Appl. Phys. 97, 10J304 (2005)

    Google Scholar 

  38. H. Hopster, H.P. Oepen, Magnetic Microscopy of Nanostructures (Springer-Verlag, Berlin/Heidelberg, 2005)

    Book  Google Scholar 

  39. L. Gao, Magnetic interactions in nanostructured films, Ph.D. thesis, University of Nebraska, USA, 2005

    Google Scholar 

  40. A. Baruth, L. Yuan, J. Burton, K. Janicka, E. Tsymbal, S. Liou, S. Adenwalla, Domain overlap in antiferromagnetically coupled [Co/Pt]/NiO/[Co/Pt] multilayers. Appl. Phys. Lett. 89, 202505 (2006)

    Article  Google Scholar 

  41. A. Baruth, D. Keavney, J. Burton, K. Janicka, E. Tsymbal, L. Yuan, S. Liou, S. Adenwalla, Origin of the interlayer exchange coupling in [Co/Pt]/Nio/[CoPt] multilayers studied with XAS, XMCD, and micromagnetic modeling. Phys. Rev. B. 74, 054419 (2006)

    Article  Google Scholar 

  42. A. Aktag, S. Michalski, L. Yue, R. Kirby, S. Liou, Formation of an anisotropy lattice in Co/Pt multilayers by direct laser interference patterning. J. Appl. Phys. 99, 093901 (2006)

    Article  Google Scholar 

  43. N. Polushkin, S. Michalski, L. Yue, R. Kirby, Evidence of long-wavelength collective excitations in magnetic superlattices. Phys. Rev. Lett. 97, 256401 (2006)

    Article  Google Scholar 

  44. X. Rui, J.E. Shield, Z. Sun, L. Yue, Y. Xu, D.J. Sellmyer, Z. Liu, D.J. Miller, High energy product exchange-spring FePt/Fe cluster nanocomposite permanent magnets. J. Magn. Magn. Mater. 305, 76–82 (2006)

    Article  CAS  Google Scholar 

  45. A. Asenjo, M. Jaafar, E. Gonzalez, J. Martin, M. Vazquez, J. Vicent, Imaging magnetic domains in Ni nanostructures. J. Magn. Magn. Mater. 310, e936 (2007)

    Article  CAS  Google Scholar 

  46. L. Yue, Z. Li, R. Kirby, D. Sellmyer, MFM study of interlayer exchange coupled Co/Ru/Co films: effect of Ru layer thickness. Ultramicroscopy, 109, 1040 (2009)

    Article  CAS  Google Scholar 

  47. V. Mironov, B. Gribkoc, S. Vdovichev, S. Gusev, A. Fraerman, O. Ermolaeva, A. Shubin, A. Alexeev, P. Zhdan, C. Binns, Magnetic force microscope tip-induced remagnetization of CoPt nanodisks with perpendicular anisotropy. J. Appl. Phys. 106, 053911 (2009)

    Article  Google Scholar 

  48. K. Stoev, F. Liu, Y. Chen, X. Dang, P. Luo, J. Chen, J. Wang, K. Kung, M. Lederman, M. Re, G. Choe, J.N. Zhou, M. Yu, Demonstration and characterization of 130 Gb∕in2 magnetic recording systems. J. Appl. Phys. 93, 6552 (2003)

    Article  CAS  Google Scholar 

  49. M. Johnson, Hybrid ferromagnet-semiconductor devices. J. Vac. Sci. Technol. A 16, 1806 (1998)

    Article  CAS  Google Scholar 

  50. S. Mangin, D. Ravelosona, J. Katine, M. Carey, B. Terris, E. Fullerton, Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210 (2006)

    Article  CAS  Google Scholar 

  51. D. Andrew, Kent: Spintronics: a nanomagnet oscillator. Nat. Mater. 6, 399 (2007)

    Article  Google Scholar 

  52. G.A. Prinz, Magnetoelectronics. Science 282(5394), 1660 (1998)

    CAS  Google Scholar 

  53. Digital Instruments, Dimension 3100 Series Scanning Probe Microscope Instruction Manual, Chapter 13, Digital Instruments, Inc. Santa Barbara, CA. (1998)

    Google Scholar 

  54. S. Tomlinson, A. Farley, S. Hoon, M. Valera, Interactions between soft magnetic samples and MFM tips. J. Magn. Magn. Mater. 157–158, 557 (1996)

    Article  Google Scholar 

  55. A. Thiaville, L. Belliard, D. Majer, E. Zeldov, J. Miltat, Measurement of the stray field emanating from magnetic force microscope tips by Hall Effect microsensors. J. Appl. Phys. 82, 3182 (1997)

    Article  CAS  Google Scholar 

  56. P. Grutter, H. Mamin, D. Rugar, in Magnetic Force Microscope, ed. R. Wiesendanger, H.-J. Gunterodt. Scanning Tunneling Microscopy, vol. 28 (Springer-Verlag, Berlin, 1992), pp. 151–207.

    Google Scholar 

  57. L. Abelmann, A. van den Bos, C. Lodder, in Magnetic Force Microscopy – Towards Higher Resolution, ed. H. Hopster, H.P. Oepen. Magnetic Microscopy of Nanostructures (Springer-Verlag, Berlin Heidelberg, 2005) pp. 253–283

    Google Scholar 

  58. L. Abelmann, S. Porthun, M. Haast, C. Lodder, A. Moser, M. Best, P. Vanschendel, B. Stiefel, H. Hug, G. Heydon, A. Farley, S. Hoon, T. Pfaffelhuber, R. Proksch, K. Babcock, Comparing the resolution of magnetic force microscopes using the CAMST reference samples. J. Magn. Magn. Mater. 190, 135 (1998)

    Article  CAS  Google Scholar 

  59. S.H. Liou, Advanced magnetic force microscopy tips for imaging domains, in Handbook of Advanced Magnetic Materials, ed. by Y. Liu, D.J. Sellmyer, D. Shindo, vol. 2 (Springer, New York, 2006), pp. 1–23

    Google Scholar 

  60. P. Grutter, D. Rugar, H. Mamin, G. Castillo, S. Lambert, C. Lin, R. Valletta, O. Wolter, Batch fabricated sensors for magnetic force microscopy. Appl. Phys. Lett. 57, 1820 (1990)

    Article  Google Scholar 

  61. P. Hopkins, J. Moreland, S. Malhotra, S.H. Liou, Superparamagnetic magnetic force microscopy tips. J. Appl. Phys. 79, 6448 (1996)

    Article  CAS  Google Scholar 

  62. S.H. Liou, Y.D. Yao, Development of high coercivity magnetic force microscopy tips. J. Magn. Magn. Mater. 190, 130 (1998)

    Article  CAS  Google Scholar 

  63. J. Lohau, S. Kirsch, A. Carl, G. Dumpich, E. Wassermann, Quantitative determination of effective dipole and monopole moments of magnetic force microscopy tips. J. Appl. Phys. 86, 3410 (1999)

    Article  CAS  Google Scholar 

  64. L. Folks, M. Best, P. Rice, B. Terris, D. Weller, J. Chapman, Perforated tips for high-resolution in-plane magnetic force microscopy. Appl. Phys. Lett. 76, 909 (2000)

    Article  CAS  Google Scholar 

  65. Z. Liu, Y. Dan, Q. Jinjun, Y. Wu, Magnetic force microscopy using focused ion beam sharpened tip with deposited antiferro–ferromagnetic multiple layers. J. Appl. Phys. 91, 8843 (2002)

    Article  CAS  Google Scholar 

  66. G. Phillips, M. Siekman, L. Abelmann, J. Lodder, High resolution magnetic force microscopy using focused ion beam modified tips. Appl. Phys. Lett. 81, 865 (2002)

    Article  CAS  Google Scholar 

  67. L. Gao, L.P. Yue, T. Yokota, R. Skiomski, S.H. Liou, H. Takahoshi, H. Saito, S. Ishio, Focused ion beam milled CoPt magnetic force microscopy tips for high resolution domain images. IEEE Trans. Magn, 40, 2194–2196 (2004)

    Article  CAS  Google Scholar 

  68. I.-C. Chen, L.-H. Chen, A. Gapin, S. Jin, L. Yuan, S.-H. Liou, Iron–platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging. Nanotechnology 19, 075501 (2008)

    Article  Google Scholar 

  69. I.-C. Chen, L.-H. Chen, X.-R. Ye, C. Daraio, S. Jin, C. Orme, A. Quist, R. Lal, Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102 (2006)

    Article  Google Scholar 

  70. S.H. Liou, S. Huang, E. Klimek, R. Kirby, Y. Yao, Enhancement of coercivity in nanometer-size CoPt crystallites. J. Appl. Phys. 85, 4334 (1999)

    Article  CAS  Google Scholar 

  71. S. Signoretti, C. Beeli, S.H. Liou, Electron holography quantitative measurements on magnetic force microscopy probes. J. Magn. Magn. Mater. 272, 2167 (2004)

    Article  Google Scholar 

  72. L. Hámos, P. Thiessen, Uber die Sichtbarmachung von Bezirken verschiedenen ferromagnetischen Zustandes fester Körper. Z. Phys. 71, 442–444 (1931)

    Article  Google Scholar 

  73. F. Bitter, On inhomogeneities in the magnetization of ferromagnetic materials. Phys. Rev. 38, 1903–1905 (1931)

    Article  Google Scholar 

  74. F. Bloch, Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika. Z. Phys. 74, 295 (1932)

    Article  CAS  Google Scholar 

  75. L. Landau, E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8, 153 (1935)

    Google Scholar 

  76. A. Hubert, R. Schafer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer-Verlag, Berlin, Heidelberg, New-York, 1998)

    Google Scholar 

  77. D. Atkinson, D. Allwood, G. Xiong, M. Cooke, C. Faulkner, R. Cowburn, Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nat. Mater. 2, 85 (2003)

    Article  CAS  Google Scholar 

  78. M. Redjdal, J. Giusti, M. Ruane, F. Humphrey, Structure dependent stray fields from domain walls in permalloy films. IEEE Trans. Magn, 39, 1267 (2003)

    Article  Google Scholar 

  79. D. Allwood, G. Xiong, C. Faulkner, D. Atkinson, D. Petit, R. Cowburn, Magnetic domain-wall logic. Science 309, 1688 (2005)

    CAS  Google Scholar 

  80. R. Skomski, Simple Models of Magnetism (University Press, Oxford, 2008), pp. 123–128

    Google Scholar 

  81. S. Stephen, Y. Chou, Patterned magnetic nanostructures and quantized magnetic disks. Proc. IEEE 85, 652 (1997)

    Article  Google Scholar 

  82. C. Ross, H. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, R. Ram, Fabrication of patterned media for high density magnetic storage. J. Vac. Sci. Technol. B 17, 3168–3174 (1999)

    Article  CAS  Google Scholar 

  83. S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Molnar, M. Roukes, A. Chtchelkanova, D. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  CAS  Google Scholar 

  84. V. Novosad, M. Grimsditch, J. Darrouzet, J. Pearson, S. Bader, V. Metlushko, K. Guslienko, Y. Otani, H. Shima, K. Fukamichi, Shape effect on magnetization reversal in chains of interacting ferromagnetic elements. Appl. Phys. Lett. 82, 3716 (2003)

    Article  CAS  Google Scholar 

  85. J. Lodder, Methods for preparing patterned media for high-density recording. J. Magn. Magn. Mater. 272–276, 1692 (2004)

    Article  Google Scholar 

  86. J. Donahue, R.D. McMichael, Exchange energy representations in computational micromagnetics. Physica B 233, 272 (1997)

    Article  CAS  Google Scholar 

  87. N. Polushkin, S. Gusev, M. Drozdov, Y. Verevkin, V. Petryakov, Arrays of magnetic wires created in phase-separating Fe-containing alloys by interference laser irradiation. J. Appl. Phys. 81, 5478 (1997)

    Article  CAS  Google Scholar 

  88. N. Polushkin, J. Wittborn, C. Canalias, K. Rao, A. Alexeev, A. Popkov, Local magnetostrictive response of small magnetic entities in artificial Fe − Cr composites. J. Appl. Phys. 92, 2779 (2002)

    Article  CAS  Google Scholar 

  89. M. Zheng, M. Yu, Y. Liu, R. Skomski, S. Liou, D. Sellmyer, V. Petryakov, Y. Verevkin, N. Polushkin, N. Salashchenko, Magnetic nanodot arrays produced by direct laser interference lithography. Appl. Phys. Lett. 79, 2606 (2001)

    Article  CAS  Google Scholar 

  90. A. Aktag, Direct laser interference pattering of magnetic thin films, Ph.D. thesis, University of Nebraska, USA, 2004

    Google Scholar 

  91. Z. Li, P. Carcia, Microstructural dependence of magnetic properties of Pt/Co multilayer thin films. J. Appl. Phys. 71, 842 (1992)

    Article  CAS  Google Scholar 

  92. J. Du, S. Wang, C. Ryby, A. Khapikov, J. Liu, A. Barnard, W. Harrell, Magnetic and structural properties of annealed CoPt/C multilayers. J. Magn. Magn. Mater. 231, 231 (2001)

    Article  CAS  Google Scholar 

  93. G. Hu, T. Thomson, M. Albrecht, M. Best, B. Terris, C. Rettner, S. Raoux, G. McClelland, M. Hart, Magnetic and recording properties of Co/Pd islands on prepatterned substrates. J. Appl. Phys. 95, 7013 (2004)

    Article  CAS  Google Scholar 

  94. K. Pandey, J. Chen, G. Chow, J. Hu, L10CoPt − Ta2O5 exchange coupled multilayer media for magnetic recording. Appl. Phys. Lett. 94, 232502 (2009)

    Article  Google Scholar 

  95. S. Sun, C. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000)

    Article  CAS  Google Scholar 

  96. H. Zeng, J. Li, J. Liu, Z. Wang, S. Sun, Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395 (2002)

    Article  CAS  Google Scholar 

  97. D. Sellmyer, Applied physics: strong magnets by self-assembly. Nature 420, 374 (2002)

    Article  CAS  Google Scholar 

  98. Y. Sui, L. Yue, R. Skomski, X. Li, J. Zhou, D. Sellmyer, CoPt hard magnetic nano- particle films synthesized by high temperature chemical reduction. J. Appl. Phys. 93, 7571 (2003)

    Article  CAS  Google Scholar 

  99. E. Abarra, A. Inomata, H. Sato, I. Okamoto, Y. Mizoshita, Longitudinal magnetic recording media with thermal stabilization layers. Appl. Phys. Lett. 77, 2581 (2000)

    Article  CAS  Google Scholar 

  100. E. Fullerton, D. Margulies, M.E. Schabes, M. Carey, B. Gurney, A. Moser, M. Best, G. Zeltzer, K. Rubin, H. Rosen, M. Doerner, Antiferromagnetically coupled magnetic media layers for thermally stable high-density recording. Appl. Phys. Lett. 77, 3806 (2000)

    Article  CAS  Google Scholar 

  101. S. Mangin, D. Ravelosona, J. Katine, M. Carey, B. Terris, E. Fullerton, Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210 (2006)

    Article  CAS  Google Scholar 

  102. P. Grunberg, R. Schreiber, Y. Pang, M. Brodsky, H. Sowers, Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442 (1986)

    Article  Google Scholar 

  103. S. Parkin, N. More, P. Roche, Oscillations in exchange coupling and magneto- resistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304 (1990)

    Article  CAS  Google Scholar 

  104. M. Zhuravlev, E. Tsymbal, S. Jaswal, Exchange model for oscillatory interlayer coupling and induced unidirectional anisotropy in [Pt∕Co]3∕NiO∕[Pt∕Co]3 multilayers. Phys. Rev. Lett. 92, 219703 (2004)

    Article  Google Scholar 

  105. O. Hellwig, A. Berger, E. Fullerton, Domain walls in antiferromagnetically coupled multilayer films. Phys. Rev. Lett. 91, 197203 (2003)

    Article  Google Scholar 

  106. Z. Li, R. Skomski, S. Michalski, L.P. Yue, R. Kirby, Magnetic antiphase domains in Co/Ru/Co trilayers. J. Appl. Phys. 107, 09D303 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to all those contributors involved in the work presented here but like to mention specially the cooperation with Drs. Lan Gao, Lu Yuan, Aliekber Aktag, Yuchen Sui, Andrew Baruth, Zhongyuan Liu, and Zhen Li; and Professors Roger Kirby, Shireen Adenwalla, Nikolay Polushkin, Ralph Skomski, and David Sellmyer for their excellent contributions and many helpful discussions which enable us to present the recent research achievements in MFM field. We also would like to thank Prof. Sitaram Jaswal and Prof. Edger Pearlstein for their careful proofreading of this chapter, and for their critical comments and helpful suggestions. Financial supports from NSF-MRSEC Award DMR-0820521, ARO W911NF-08-1-0311, ARL W911NF-09-2-0039, and the Nebraska Center for Materials and Nanoscience are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanping Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yue, L., Liou, SH. (2011). Magnetic Force Microscopy Studies of Magnetic Features and Nanostructures. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 2. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10497-8_10

Download citation

Publish with us

Policies and ethics