Skip to main content

Nanofluids of the Future

  • Chapter
Advances in Transport Phenomena

Part of the book series: Advances in Transport Phenomena ((ADVTRANS,volume 1))

Abstract

Nanofluids are a new class of fluids engineered by dispersing nanometer-size structures (particles, fibers, tubes, droplets) in base fluids. The very essence of nanofluids research and development is to enhance fluid macroscale and megascale properties such as thermal conductivity through manipulating microscale physics (structures, properties and activities). Therefore, the success of nanofluid technology depends very much on how well we can address issues like effective means of microscale manipulation, interplays among physics at different scales, and optimization of microscale physics for the optimal megascale properties. In this chapter we review methodologies available to effectively tackle these central but difficult problems and identify the future research needs as well. The reviewed techniques include nanofluids synthesis through liquid-phase chemical reactions in continuous-flow microfluidic microreactors, scaling-up by the volume averaging, and constructal design with the constructal theory. The identified areas of future research contain microfluidic nanofluids, thermal waves, and constructal nanofluids. While our focus is on heat-conduction nanofluids, the methodologies are equally valid for the other types of nanofluids. The review could serve as a coherent, inspiring and realistic plan for future research and development of nanofluid technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choi, S.U.S., Zhang, Z.G., Keblinski, P.: Nanofluids. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, vol. 6, pp. 757–773. American Scientific Publishers (2004)

    Google Scholar 

  2. Peterson, G.P., Li, C.H.: Heat and mass transfer in fluids with nanoparticle suspensions. Adv. Heat Transfer 39, 257–376 (2006)

    Google Scholar 

  3. Das, S.K., Choi, S.U.S., Yu, W.H., Pradeep, T.: Nanofluids: Science and Technology. John Wiley & Sons, Chichester (2008)

    Google Scholar 

  4. Wen, D.S., Ding, Y.L., Williams, R.: Nanofluids turn up the heat. TCE 771, 32–34 (2005)

    Google Scholar 

  5. Pileni, M.P.: Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Adv. Funct. Mater. 11, 323–336 (2001)

    Article  Google Scholar 

  6. Wasan, D.T., Nikolov, A.D.: Spreading of nanofluids on solids. Nature 423, 156–159 (2003)

    Article  Google Scholar 

  7. Gorman, J.: Nanofluid flow: detergents may benefit from new insight. Sci. News 163, 292–293 (2003)

    Article  Google Scholar 

  8. Chen, H.S., Ding, Y.L., He, Y.R., Tan, C.Q.: Rheological behaviour of ethylene glycol based titania nanofluids. Chemical Physics Letters 444, 333–337 (2007)

    Article  Google Scholar 

  9. Zhang, L.L., Jiang, Y.H., Ding, Y.L., Povey, M., York, D.: Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research 9, 479–489 (2007)

    Article  Google Scholar 

  10. Pomogailo, A.D., Kestelman, V.N.: Metallopolymer Nanocomposites. Springer, Heidelberg (2005)

    Google Scholar 

  11. Dice, G.D., Mujumdar, S., Elezzabi, A.Y.: Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser. Appl. Phys. Lett. 86, 131105 (2005)

    Article  Google Scholar 

  12. Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 241–245 (2001)

    Article  Google Scholar 

  13. Duan, X., Huang, Y., Agarwal, R., Lieber, C.M.: Single-nanowire electrically driven lasers. Nature 421, 66–69 (2003)

    Article  Google Scholar 

  14. Singh, A.K.: Thermal conductivity of nanofluids. Defence Science Journal 58, 600–607 (2008)

    Google Scholar 

  15. Li, C.H., Williams, W., Buongiorno, J., Hu, L.W., Peterson, G.P.: Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al2O3/Water Nanofluids. J. Heat Transfer 130, 040301/1–044503/4 (2008)

    Google Scholar 

  16. Wang, L.Q., Wei, X.H.: Nanofluids: Synthesis, Heat Conduction, and Extension. J. Heat Transfer 131, 033102/1–033102/7 (2009)

    Google Scholar 

  17. Jang, S.P., Choi, S.U.S.: Effects of Various Parameters on Nanofluid Thermal Conductivity. J. Heat Transfer 129, 617–623 (2007)

    Article  Google Scholar 

  18. Vadasz, P.: Heat Conduction in Nanofluid Suspensions. J. Heat Transfer 128, 465–477 (2006)

    Article  Google Scholar 

  19. Lee, S., Choi, S.U.S., Li, S., Eastman, J.A.: Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. J. Heat Transfer 121, 280–289 (1999)

    Article  Google Scholar 

  20. Wei, X.H., Zhu, H.T., Wang, L.Q.: CePO4 Nanofluids: Synthesis and Thermal Conductivity. J. Thermophysics Heat Transfer 23, 219–222 (2009)

    Article  Google Scholar 

  21. Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. J. Heat Transfer 125, 567–574 (2003)

    Article  Google Scholar 

  22. He, Y.R., Men, Y.B., Liu, X., Lu, H.L., Chen, H.S., Ding, Y.L.: Study on forced convective heat transfer of non-Newtonian nanofluids. J. Thermal Sci. 18, 20–26 (2009)

    Article  Google Scholar 

  23. Tzou, D.Y.: Thermal Instability of Nanofluids in Natural Convection. Int. J. Heat Mass Transfer 51, 2967–2979 (2008)

    Article  MATH  Google Scholar 

  24. Buongiorno, J.: Convection Transport in Nanofluids. J. Heat Transfer 128, 240–250 (2006)

    Article  Google Scholar 

  25. Xuan, Y.M., Li, Q.: Investigation on Convective Heat Transfer and Flow Features of Nanofluids. J. Heat Transfer 125, 151–155 (2003)

    Article  Google Scholar 

  26. Milanova, D., Kumar, R.: Heat Transfer Behavior of Silica Nanoparticles Experiment in Pool Boiling. J. Heat Transfer 130, 042401/–042401/6 (2009)

    Google Scholar 

  27. Kim, S.J., McKrell, T., Buongiorno, J., Hu, L.W.: Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure. J. Heat Transfer 130, 044501/1–044501/3 (2008)

    Google Scholar 

  28. Kim, S.J., McKrell, T., Buongiorno, J., Hu, L.W.: Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids. J. Heat Transfer 131, 043204/1–043204/7 (2009)

    Google Scholar 

  29. Kedzierski, M.A.: Effect of CuO Nanoparticle Concentration on R134a/Lubricant Pool-Boiling Heat Transfer. J. Heat Transfer 131, 043205/1–043205/7 (2009)

    Google Scholar 

  30. Wu, D.X., Zhu, H.T., Wang, L.Q., Liu, L.M.: Critical Issues in Nanofluids Preparation, Characterization and Thermal Conductivity. Current Nanoscience 5, 103–112 (2009)

    Article  Google Scholar 

  31. Choi, S.U.S.: Nanofluids: From Vision to Reality Through Research. J. Heat Transfer 131, 033106/1–033106/9 (2009)

    Google Scholar 

  32. Eastman, J.A., Phillpot, S.R., Choi, S.U.S., Keblinski, P.: Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004)

    Article  Google Scholar 

  33. Phelan, P.E., Bhattacharya, P., Prasher, R.S.: Nanofluids for heat transfer applications. Annu. Rev. Heat Transfer 14, 255–275 (2005)

    Google Scholar 

  34. Sobhan, C.B., Peterson, G.P.: Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications. CRC Press, Boca Raton (2008)

    Google Scholar 

  35. Wang, L.Q., Xu, M.T., Wei, X.H.: Multiscale theorems. Adv. Chemical Engineering 34, 175–468 (2008)

    Article  Google Scholar 

  36. Wang, L.Q.: Flows through porous media: a theoretical development at macroscale. Transport in Porous Media 39, 1–24 (2000)

    Article  MathSciNet  Google Scholar 

  37. Choi, S.U.S., Eastman, J.A.: Enhanced heat transfer using nanofluids. United States Patent, US 6221275 B1 (2001)

    Google Scholar 

  38. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  39. Chang, H., Tsung, T.T., Chen, L.C., Yang, Y.C., Lin, H.M., Lin, C.K., Jwo, C.S.: Nanoparticle suspension preparation using the arc spray nanoparticle synthesis system combined with ultrasonic vibration and rotating electrode. Int. J. Adv. Manufacturing Tech. 26, 552–558 (2005)

    Article  Google Scholar 

  40. Lo, C.H., Tsung, T.T., Chen, L.C., Su, C.H., Lin, H.M.: Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS). J. Nanoparticle Research 7, 313–320 (2005)

    Article  Google Scholar 

  41. Lo, C.H., Tsung, T.T., Chen, L.C.: Shaped-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS). J. Crystal Growth 277, 636–642 (2005)

    Article  Google Scholar 

  42. Romano, J.M., Parker, J.C., Ford, Q.B.: Application opportunities for nanoparticles made from condensation of physical vapors. Adv. Powder Metallurgy Particulate Materials 2, 12–13 (1997)

    Google Scholar 

  43. Zhu, H.T., Lin, Y.S., Yin, Y.S.: A novel one-step chemical method for preparation of copper nanofluids. J. Colloid Interface Sci. 277, 100–103 (2004)

    Article  Google Scholar 

  44. Zhu, H.T., Zhang, C.Y., Liu, S.Q., Tang, Y.M., Yin, Y.S.: Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl. Phys. Lett. 89, 023123 (2006)

    Google Scholar 

  45. Zhu, H.T., Zhang, C.Y., Tang, Y.M.: Novel synthesis and thermal conductivity of CuO nanofluids. J. Phys. Chem. C 111, 1646–1650 (2007)

    Article  Google Scholar 

  46. Wei, X.H., Kong, T.T., Zhu, H.T., Wang, L.Q.: CuS/Cu2S nanofluids: synthesis and thermal conductivity. Int. J. Heat Mass Transfer (in press, 2009)

    Google Scholar 

  47. Wei, X.H., Zhu, H.T., Kong, T.T., Wang, L.Q.: Synthesis and Thermal Conductivity of Cu2O Nanofluids. Int. J. Heat Mass Transfer 52, 4371–4374 (2009)

    Article  Google Scholar 

  48. Wang, L.Q., Liu, F.: Forced convection in slightly curved microchannels. Int. J. Heat Mass Transfer 50, 881–896 (2007)

    Article  MATH  Google Scholar 

  49. Wang, L.Q., Yang, T.L.: Multiplicity and stability of convection in curved ducts: review and progress. Adv. Heat Transfer 38, 203–255 (2004)

    Google Scholar 

  50. Wang, L.Q., Cheng, K.C.: Flow transitions and combined free and forced convective heat transfer in rotating curved channels: the case of positive rotation. Phys. Fluids 8, 1553–1573 (1996)

    Article  MATH  Google Scholar 

  51. Sudarsan, A.P., Ugaz, V.M.: Fluid mixing in planar spiral microchannels. Lab on a Chip 6, 74–82 (2006)

    Article  Google Scholar 

  52. Hong, C.C., Choi, J.W., Ahn, C.H.: A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab on a Chip 4, 109–113 (2004)

    Article  Google Scholar 

  53. Sudarsan, A.P., Ugaz, V.M.: Multivortex micromixing. Proceedings of the National Academy of Sciences of the United States of America 103, 7228–7233 (2006)

    Article  Google Scholar 

  54. Alleborn, N., Nandakumar, K., Raszillier, H., Durst, F.: Further contributions on the two-dimensional flow in a sudden expansion. J. Fluid Mech. 330, 169–188 (1997)

    Article  MATH  Google Scholar 

  55. Nguyen, N.T.: Micromixers: Fundamentals, Design and Fabrication. William-Andrew (2008)

    Google Scholar 

  56. Tice, J.D., Song, H., Lyon, A.D., Ismagilov, R.F.: Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir 19, 9127–9133 (2003)

    Article  Google Scholar 

  57. Günther, A., Jhunjhunwala, M., Thalmann, M., Schmidt, M.A., Jensen, K.F.: Micromixing of miscible liquids in segmented gas−liquid flow. Langmuir 21, 1547–1555 (2005)

    Article  Google Scholar 

  58. Hosokawa, K., Fujii, T., Endo, I.: Handling of picoliter liquid samples in a poly (dimethylsiloxane)-based microfluidic device. Anal. Chem. 71, 4781–4785 (1999)

    Article  Google Scholar 

  59. Handique, K., Burns, M.A.: Mathematical modeling of drop mixing in a slit-type microchannel. J. Micromech. Microeng. 11, 548–554 (2001)

    Article  Google Scholar 

  60. Kashid, M.N., Gerlach, I., Goetz, S., Franzke, J., Acker, J.F., Platte, F., Agar, D.W., Turek, S.: Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary microreactor. Ind. Eng. Chem. Res. 44, 5003–5010 (2005)

    Article  Google Scholar 

  61. Grigoriev, R.O.: Chaotic mixing in thermocapillary-driven microdroplets. Phys. Fluids 17, 033601 (2005)

    Google Scholar 

  62. Muradoglu, M., Stone, H.A.: Mixing in a drop moving through a serpentine channel: A computational study. Phys. Fluids 17, 073305 (2005)

    Google Scholar 

  63. Garstecki, P., Fischbach, M.A., Whitesides, G.M.: Design for mixing using bubbles in branched microfluidic channels. Appl. Phys. Lett. 86, 244108 (2005)

    Article  Google Scholar 

  64. Salman, W., Angeli, P., Gavriilidis, A.: Sample pulse broadening in Taylor flow microchannels for screening applications. Chem. Eng. Technol. 28, 509–514 (2005)

    Article  Google Scholar 

  65. Garstecki, P., Fuerstman, M.J., Fischbach, M.A., Sia, S.K., Whitesides, G.M.: Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab Chip 6, 207–212 (2006)

    Article  Google Scholar 

  66. Fan, J., Zhang, Y.X., Wang, L.Q.: Bubble formation in microfluidic T-junctions (submitted, 2009)

    Google Scholar 

  67. Tan, Y.C., Lee, A.: Micro/naodroplets in microfluidic devices. In: Bhushan, B. (ed.) Springer Handbook of Nanotechnology, pp. 571–587. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  68. Wang, L.Q., Zhang, Y.X., Cheng, L.: Magic microfluidic T-junctions: valving and bubbling. Chaos, Solitons & Fractals 39, 1530–1537 (2009)

    Article  Google Scholar 

  69. Shah, R.K., Shum, H.C., Rowat, A.C., Lee, D.Y., Agresti, J.J., Utada, A.S., Chu, L.Y., Kim, J.W., Fernandez-Nieves, A., Martinez, C.J., Weitz, D.A.: Designer emulsions using microfluidics. Materials Today 11, 18–27 (2008)

    Article  Google Scholar 

  70. Wei, X.H., Wang, L.Q.: Microfluidic Cu2O nanofluids (submitted, 2009)

    Google Scholar 

  71. Xuan, Y.M., Li, Q., Zhang, X., Hu, W.: Aggregation structure and thermal conductivity of nanofluids. AICHE Journal 49, 1038–1043 (2003)

    Article  Google Scholar 

  72. Koo, J., Kleinstreuer, C.: A new thermal conductivity model for nanofluids. J. Nanoparticle Research 6, 577–588 (2004)

    Article  Google Scholar 

  73. Jang, S.P., Choi, S.U.S.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004)

    Article  Google Scholar 

  74. Bhattacharya, P., Saha, S.K., Yadav, A., Phelan, P.E., Prasher, R.S.: Brownian dynamics simulation to determine the effect thermal conductivity of nanofluids. J. Appl. Phys. 95, 6492–6494 (2004)

    Article  Google Scholar 

  75. Prasher, R., Bhattacharya, P., Phelan, P.E.: Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 94, 025901 (2005)

    Google Scholar 

  76. Prasher, R., Bhattacharya, P., Phelan, P.E.: Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J. Heat Transfer 128, 588–595 (2006)

    Article  Google Scholar 

  77. Yu, W., Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanoparticle Research 5, 167–171 (2003)

    Article  Google Scholar 

  78. Yu, W., Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model. J. Nanoparticle Research 6, 355–361 (2004)

    Article  Google Scholar 

  79. Xue, L., Keblinski, P., Phillpot, S.R., Choi, S.U.S., Eastman, J.A.: Effect of liquid layering at the liquid-solid interface on thermal transport. Int. J. Heat Mass Transfer 47, 4277–4284 (2004)

    Article  MATH  Google Scholar 

  80. Xie, H., Fujii, M., Zhang, X.: Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transfer 48, 2926–2932 (2005)

    Article  Google Scholar 

  81. Ren, Y., Xie, H., Cai, A.: Effective thermal conductivity of nanofluids containing spherical nanoparticles. J. Phys. D 38, 3958–3961 (2005)

    Article  Google Scholar 

  82. Leong, K.C., Yang, C., Murshed, S.M.S.: A model for the thermal conductivity of nanofluids: the effect of interfacial layer. J. Nanopart. Res. 8, 245–254 (2006)

    Article  Google Scholar 

  83. Wang, B.X., Zhou, L.P., Peng, X.F.: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transfer 46, 2665–2672 (2003)

    Article  MATH  Google Scholar 

  84. Prasher, R., Phelan, P.E., Bhattacharya, P.: Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Letters 6, 1529–1534 (2006)

    Article  Google Scholar 

  85. Rusconi, R., Rodari, E., Piazza, R.: Optical measurements of the thermal properties of nanofluids. Appl. Phys. Lett. 89, 261916 (2006)

    Article  Google Scholar 

  86. Putnam, S.A., Cahill, D.G., Braun, P.V., Ge, Z.B., Shimmin, R.G.: Thermal conductivity of nanoparticle suspensions. J. Appl. Phys. 99, 084308

    Google Scholar 

  87. Eapen, J., Williams, W.C., Buongiorno, J., Hu, L.W., Yip, S.: Mean-field versus microconvection effects in nanofluid thermal conduction. Phys. Rev. Lett. 99, 095901 (2007)

    Google Scholar 

  88. Das, S.K., Choi, S.U.S., Patel, H.E.: Heat transfer in nanofluids: a review. Heat Transfer Engng. 27, 3–19 (2006)

    Article  Google Scholar 

  89. Keblinski, P., Prasher, R., Eapen, J.: Thermal conductance of nanofluids: is the controversy over? J. Nanopart. Res. 10, 1089–1097 (2008)

    Article  Google Scholar 

  90. Murshed, S.M.S.: Correction and comment on thermal conductance of nanofluids: is the controversy over? J. Nanopart. Res. 11, 511–512 (2009)

    Article  Google Scholar 

  91. Wang, L.Q., Zhou, X.S., Wei, X.H.: Heat Conduction: Mathematical Models and Analytical Solutions. Springer, Heidelberg (2008)

    Google Scholar 

  92. Whitaker, S.: The Method of Volume Averaging. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  93. Wang, L.Q.: Generalized Fourier law. Int. J. Heat Mass Transfer 37, 2627–2634 (1994)

    Article  MATH  Google Scholar 

  94. Auriault, J.L.: Heterogeneous medium: is an equivalent macroscopic description possible? Int. J. Engng. Sci. 29, 785–795 (1991)

    Article  MATH  Google Scholar 

  95. Quintard, M., Whitaker, S.: One- and two-equation models for transient diffusion processes in two-phase systems. Adv. in Heat Transfer 23, 369–464 (1993)

    Google Scholar 

  96. Ochoa-Tapia, J.A., Whitaker, S.: Heat transfer at the boundary between a porous medium and a homogeneous fluid. Int. J. Heat Mass Transfer 40, 2691–27076 (1997)

    Article  MATH  Google Scholar 

  97. Ochoa-Tapia, J.A., Whitaker, S.: Heat transfer at the boundary between a porous medium and a homogeneous fluid: The one-equation model. J. Porous Media 1, 31–46 (1998)

    MATH  Google Scholar 

  98. Howes, F.A., Whitaker, S.: The spatial averaging theorem revisited. Chem. Eng. Sci. 40, 1387–1392 (1985)

    Article  Google Scholar 

  99. Gray, W.G., Leijnse, A., Kolar, R.L., Blain, C.A.: Mathematical Tolls for Changing Spatial Scales in the Analysis of Physical Systems. CRC Press, Boca Raton (1993)

    Google Scholar 

  100. Carbonell, R.G., Whitaker, S.: Heat and mass transfer in porous media. In: Bear, J., Corapcioglu, M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media, pp. 123–198. Martinus Nijhoff (1984)

    Google Scholar 

  101. Quintard, M., Kaviany, M., Whitaker, S.: Two-medium treatment of heat transfer in porous media: numerical results for effective parameters. Adv. Water Resour. 20, 77–94 (1997)

    Article  Google Scholar 

  102. Quintard, M., Whitaker, S.: Theoretical Analysis of Transport in Porous Media. In: Vafai, K. (ed.) Handbook of Heat Transfer in Porous Media, pp. 1–52. Marcel Dekker, New York (2000)

    Google Scholar 

  103. Quintard, M., Whitaker, S.: Local thermal equilibrium for transient heat conduction: Theory and comparison with numerical experiments. Int. J. Heat Mass Transfer 38, 2779–2796 (1995)

    Article  MATH  Google Scholar 

  104. Tzou, D.Y.: Macro-to Microscale Heat Transfer: The Lagging Behavior. Taylor & Francis, Abington (1997)

    Google Scholar 

  105. Wang, L.Q., Wei, X.H.: Equivalence between dual-phase-lagging and two-phase-system heat conduction processes. Int. J. Heat Mass Transfer 51, 1751–1756 (2008)

    Article  MATH  Google Scholar 

  106. Wang, L.Q., Zhou, X.S.: Dual-phase-lagging Heat-Conduction Equations. Shandong University Press (2000)

    Google Scholar 

  107. Wang, L.Q., Zhou, X.S.: Dual-phase-lagging Heat-Conduction Equations: Problems and Solutions. Shandong University Press (2001)

    Google Scholar 

  108. Wang, L.Q., Xu, M.T., Zhou, X.S.: Well-posedness and solution structure of dual-phase-lagging heat conduction. Int. J. Heat Mass Transfer 44, 1659–1669 (2001)

    Article  MATH  Google Scholar 

  109. Xu, M.T., Wang, L.Q.: Thermal oscillation and resonance in dual-phase-lagging heat conduction. Int. J. Heat Mass Transfer 45, 1055–1061 (2002)

    Article  MATH  Google Scholar 

  110. Wang, L.Q., Xu, M.T., Wei, X.H.: Dual-phase-lagging and porous-medium heat conduction processes. In: Vadasz, P. (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media - from Bioengineering and Microelectronics to Nanotechnology, pp. 1–37. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  111. Fan, J., Wang, L.Q.: Microstructural effects on macroscale thermal properties in nanofluids (submitted, 2009)

    Google Scholar 

  112. Bejan, A., Lorente, S.: Design with Constructal Theory. Wiley, Chichester (2008)

    Book  Google Scholar 

  113. Reis, A.H.: Constructal theory: from engineering to physics, and how flow systems develop shape and structure. App. Mech. Rev. 59, 269–282 (2006)

    Article  Google Scholar 

  114. Bejan, A., Lorente, S.: Constructal theory of configuration generation in nature and engineering. J. App. Phys. 100, 041301/1–041301/27 (2006)

    Google Scholar 

  115. Bai, C., Wang, L.Q.: Constructal design of particle volume fraction in nanofluids. J. Heat Transfer 131, 112402/1–112402/7 (2009)

    Google Scholar 

  116. Wang, L.Q.: An approach for thermodynamic reasoning. Int. J. Modern Phys. B 10, 2531–2551 (1996)

    Article  Google Scholar 

  117. Rocha, L.A., Lorente, S., Bejan, A.: Constructal design for cooling a disc-shaped area by conduction. Int. J. Heat Mass Transfer 45, 1643–1652 (2002)

    Article  MATH  Google Scholar 

  118. Bejan, A.: Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transfer 40, 799–816 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, L., Quintard, M. (2009). Nanofluids of the Future. In: Wang, L. (eds) Advances in Transport Phenomena. Advances in Transport Phenomena, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02690-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02690-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02689-8

  • Online ISBN: 978-3-642-02690-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics