Skip to main content

Memory and Selectivity in Evolving Scale-Free Immune Networks

  • Conference paper
Artificial Immune Systems (ICARIS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2787))

Included in the following conference series:

Abstract

In this paper we examine the impact of graph theory and more particularly the scale-free topology on Immune Network models. In the case of a simple but not trivial model we analyze network performances as long term selectivity properties, its computational capabilities as memory capacity, and relation with Neural Networks. A more advanced Immune Network model is conceptualized and it is developed a scaffold for further mathematical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bui, J.D., Calbo, S., Hayden-Martinez, K., Kane, L.P., Gardner, P., Hedrick, S.M.: A role for camkii in t cell memory. Cell 10, 457–467 (2000)

    Article  Google Scholar 

  2. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982)

    Google Scholar 

  3. Celada, F.: The cellular basis of immunological memory. Immunol. Rev. 110, 63–87 (1971)

    Google Scholar 

  4. Castellani, G.C., Giberti, C., Franceschi, C., Bersani, F.: Stable state analysis of an immune network model. Int. J. Chaos Bif. 8(6), 1285–1301 (1998)

    Article  MATH  Google Scholar 

  5. Castellani, G.C., Intrator, N., Shouval, H., Cooper, L.: Solution of the bcm learning rule in a network of lateral interacting nonlinear neurons. Network 10, 111–121 (1999)

    Article  MATH  Google Scholar 

  6. Cossarizza, A., Ortolani, C., Paganelli, R., Barbieri, D., Monti, D., Sansoni, P., Fagiolo, U., Castellani, G., Bersani, F., Londei, M., Franceschi, C.: Mechanisms of Aging and Development. Mechanisms of Aging and Development 86, 173–195 (1996)

    Article  Google Scholar 

  7. Coutinho, A.: Beyond clonal selection and network. Immunol. Rev. 110, 63–87 (1989)

    Article  Google Scholar 

  8. Castellani, G.C., Quinlan, E., Cooper, L.N., Shouval, H.: A biophysical model of bidirectional synaptic plasticity: Dependence on ampa and nmda receptors. PNAS 98(22), 12772–12777 (2001)

    Article  Google Scholar 

  9. Cooper, L.N., Scofield, C.L.: Mean-field theory of a neural network. PNAS 85, 1973–1977 (1988)

    Article  MathSciNet  Google Scholar 

  10. Dudek, S.M., Bear, M.F.: Homosynaptic long-term depression in area CA1 of hippocampus and the effects on NMDA receptor blockade. PNAS 89, 4363–4367 (1992)

    Article  Google Scholar 

  11. De Boer, R.J.: Symmetric idiotypic networks: Connectance and switching stability and suppression. Bull. Math. Biol. 55, 745–780 (1993)

    Article  MATH  Google Scholar 

  12. De Boer, R.J., Kewrekidis, I.G., Perelson, A.S.: Immune network behaviour from stationary states to limit cycle oscillations. Bull. Math. Biol. 55, 745–780 (1993)

    Article  MATH  Google Scholar 

  13. De Boer, R.J., Perelson, A.: Size and connectivity as emergent properties of a developing immune network. J. Theor. Biol. 149, 381–424 (1991)

    Article  Google Scholar 

  14. Franceschi, C., Valensin, S., Bonafé, M., Paolisso, P., Yashin, A., De Benedictis, G.: The network and the remodelling theories of aging. Exp. Gerontol 35, 879–896 (2000)

    Article  Google Scholar 

  15. Franceschi, C., Valensin, S., Fagnoni, F., Barbi, C., Bonafé, M.: Biomarkers of immunosenescence: the challenge of heterogeneity and the role of antigenic load. Exp. Gerontol. 34, 911–921 (1999)

    Article  Google Scholar 

  16. Hoffmann, G.W., Kion, T.A., Forsyth, R.B., Soga, K.G., CooperWillis, A.: The n-dimensional network. In: Perelson, A.S. (ed.) Theoretical Immunology, Part 2, p. 291. Addison-Wesley, Reading (1988)

    Google Scholar 

  17. Hayden-Martinez, K., Kane, L.P., Hedrick, S.M.: Effects of a constitutively active form of calcineurin on t cell activation and thymic selection. J. Immunol. 165, 3713–3721 (2000)

    Google Scholar 

  18. Hoffmann, G.W.: A neural network model based on the analogy with the immune system. J. Theor. Biol. 122, 33–67 (1986)

    Article  Google Scholar 

  19. Intrator, N., Cooper, L.N.: Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions. Neural Networks 5, 3–17 (1992)

    Article  Google Scholar 

  20. Jerne, N.K.: Towards a network theory of immune system. Annu. Immunol. 125, 373–389 (1974)

    Google Scholar 

  21. Kirkwood, A., Lee, H.K., Bear, M.F.: Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375(6529), 328–331 (1995)

    Article  Google Scholar 

  22. Lisman, J.A.: A mechanism for the hebb and the anti-hebb processes underlying learning and memory. PNAS 86, 9574–9578 (1989)

    Article  Google Scholar 

  23. Neumann, A.U., Weisbuch, G.: Window automata analysis of population dynamics in the immune system. Bull. Math. Biol. 54, 21–44 (1992)

    MATH  Google Scholar 

  24. Perelson, A.S.: Immune network theory. Immunol. Rev. 110, 5–36 (1989)

    Article  Google Scholar 

  25. Perelson, A.S.: Mathematical approaches in immunology. In: Andersson, S.I. (ed.) Theory & Control of Dynamical Systems, pp. 200–230. World Scientific, Singapore (1992)

    Google Scholar 

  26. Stewart, J., Varela, F.J.: Exploring the meaning of connectivity in the immune network. Immunol. Rev. 110, 37–61 (1989)

    Article  Google Scholar 

  27. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  28. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  29. Newman, M.E.J.: Scientific collaboration networks. I. Network construction and fundamental results, and II. Shortest paths, weighted network and centrality. Physical Review E 64, 16131–16132 (2001)

    Article  Google Scholar 

  30. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  31. Barabasi, A.L., Albert, R.: Statistical mechanics of complex networks. Rev. of Mod. Phys. 74, 48–94 (2002)

    MathSciNet  Google Scholar 

  32. Albert, R.: Diameter of the World-Wide Web. Nature 401, 130–131 (1980)

    Google Scholar 

  33. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L., et al.: The large scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  34. Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.L.: Lethality and centrality in proteins network. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  35. Liljeros, F.: The web of human sexual contacts. Nature 411, 907–908 (2001)

    Article  Google Scholar 

  36. Ferreri Cancho, R., Sole, R.V.: Least effort and the origins of scaling in human language. Proc. Natl. Acad. Sci. U. S. A. 100, 788–791 (2003)

    Article  MathSciNet  Google Scholar 

  37. Editorial article: Making connections. Nature Immunology 3, 883 (2002)

    Google Scholar 

  38. Yook, S.H., Jeong, H., Barabasi, A.L., Tu, Y.: Weighted evolving networks. Physical Review Letters 86, 5835–5838 (2001)

    Article  Google Scholar 

  39. Kourilsky, P., Truffa-Bachi, P.: Cytokine fields and the polarization of the immune response. Trends Immunol. 22, 502–509 (2001)

    Article  Google Scholar 

  40. Abbas, A.K., Lichtman, A.H., Pober, J.S.: Cellular and Molecular Immunology, 4th edn. Saunders, Philadelphia (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tieri, P., Valensin, S., Franceschi, C., Morandi, C., Castellani, G.C. (2003). Memory and Selectivity in Evolving Scale-Free Immune Networks. In: Timmis, J., Bentley, P.J., Hart, E. (eds) Artificial Immune Systems. ICARIS 2003. Lecture Notes in Computer Science, vol 2787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45192-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45192-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40766-9

  • Online ISBN: 978-3-540-45192-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics