Skip to main content
Log in

Immune network behavior—I. From stationary states to limit cycle oscilations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a model for the idiotypic interaction between two B cell clones. This model takes into account B cell proliferation, B cell maturation, antibody production, the formation and subsequent elimination of antibody-antibody complexes and recirculation of antibodies between the spleen and the blood. Here we investigate, by means of stability and bifurcation analysis, how each of the processes influences the model's behavior. After appropriate nondimensinalization, the model consists of eight ordinary differential equations and a number of parameters. We estimate the parameters from experimental sources. Using a coordinate system that exploits the pairwise symmetry of the interactions between two clones, we analyse two simplified forms of the model and obtain bifurcation diagrams showing how their five equilibrium states are related. We show that the so-called immune states lose stability if B cell and antibody concentrations change on different time scales. Additionally, we derive the structure of stable and unstable manifolds of saddle-tye equilibria, pinpoint their (global) bifurcations and show that these bifurcations play a crucial role in determining the parameter regimes in which the model exhibits oscillatory behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abramowitz, M. and I. A. Stegun. 1965.Handbook of Mathematical Functions, p. 17. NY: Dover.

    Google Scholar 

  • Celada, F. 1971. The cellular basis of immunological memory.Prog. Allergy 15, 223–267.

    Google Scholar 

  • Coutinho, A. 1989. Beyond clonal selection and network.Immunol. Rev. 110, 63–87.

    Article  Google Scholar 

  • Davies, K. A., V. Hird, S. Stewart, G. B. Sivolapenko, P. Jose, A. A. Epenetos and M. Walport. 1990. A study ofin vivo complex formation and clearance in man.J. Immunol. 144, 4613–4620.

    Google Scholar 

  • De Boer, R. J. 1988. Symmetric idiotypic networks: connectance and switching, stability, and suppression. In:Theoretical Immunology. A. S. Perelson (Ed.), Part 2, pp. 265–289, SFI Studies in the Science of Complexity, Vol. III. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • DeBoer, R. J. and P. Hogeweg. 1989a. Memory but no suppression in low-dimensional symmetric idiotypic networks.Bull. math. Biol. 51, 223–246.

    Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1989b. Unreasonable implications of reasonable idiotypic network assumptions.Bull. math. Biol. 51, 381–408.

    Article  MATH  Google Scholar 

  • De Boer, R. J., I. G. Kevrekidis and A. S. Perelson. 1990. A simple idiotypic network model with complex dynamics.Chem. Engng Sci. 45, 2375–2382.

    Article  Google Scholar 

  • De Boer, R. J., I. G. Kevrekidis and A. S. Perelson. 1993. Immune network behavior—II. From oscillations to chaos and stationary states.Bull. math. Biol. 55, 781–816.

    Article  MATH  Google Scholar 

  • De Boer, R. J., A. U. Neumann, A. S. Perelson, L. A. Segel and G. Weisbuch. 1992a. Recent approaches to immune networks. In:Proc. First European Biomathematics Conference. V. Capasso and P. Demongeot (Ed.). Berlin: Springer-Verlag, in press.

    Google Scholar 

  • De Boer, R. J., J. D. van der Laan and P. Hogeweg. 1992b. Randomness and pattern scale in the immune network: a cellular automaton approach. In:Thinking about Biology. W. D. Stein and F. J. Varela (Ed.), Part 2, SFI Studies in the Science of Complexity, Vol. III. Redwood City, CA: Addison-Wesley, in press.

    Google Scholar 

  • De Boer, R. J., L. A. Segel and A. S. Perelson. 1992c. Pattern formation in one and two-dimensional shape space models of the immune system.J. theor. Biol. 155, 295–233.

    Article  Google Scholar 

  • De Boer, R. J. and A. S. Perelson. 1991. Size and connectivity as emergent properties of a developing immune network.J. theor. Biol. 149, 381–424.

    Google Scholar 

  • Dibrov, B. F., M. A. Livshits, and M. V. Volkenstein. 1977. Mathematical model of immune responses.J. theor. Biol. 65, 609–631.

    Article  MathSciNet  Google Scholar 

  • Farmer, J. D., N. H. Packard and A. S. Perelson. 1986. The immune system, adaptation, and machine learning.Physica 22D, 187–204.

    MathSciNet  Google Scholar 

  • Fowler, A. C. 1981. Approximate solution of a model of biological immune responses incorporating delay.J. math. Biol. 13, 23–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Hoffmann, G. W. 1975. A theory of regulation and self-nonself discrimination in an immune network.Eur. J. Immunol. 5, 638–647.

    Google Scholar 

  • Holmberg, D., A. Andersson, L. Carlson and S. Forsgen. 1989. Establishment and functional implications of B-cell connectivity.Immunol. Rev. 110, 89–103.

    Article  Google Scholar 

  • Hooijkaas, H., R. Benner, J. R. Pleasants and B. S. Wostmann. 1984. Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered “antigen-free” diet.Eur. J. Immunol. 14, 1127–1130.

    Google Scholar 

  • Jerne, N. K. 1974. Towards a network theory of the immune system.Ann. Immunol. (Inst. Pasteur) 125 C, 373–389.

    Google Scholar 

  • Landis, E. M. and J. R. Pappenheimer. 1962. Exchange of substances through the capillary walls. In:Handbook of Physiology, Circulation II. Washington, DC: American Physiology Society.

    Google Scholar 

  • Lundkvist, I., A. Coutinho, F. Varela and D. Holmberg. 1989. Evidence for a functional idiotypic network amongst natural antibodies in normal mice.Proc. Natn. Acad. Sci. USA 86, 5074–5078.

    Article  Google Scholar 

  • Pabst, R. 1988. The role of the spleen in lymphocyte migration. In:Migration and Homing of Lymphoid Cells. A. J. Husband (Ed.), Vol. I, pp. 63–84. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Pereira, P., L. Forni, E. L. Larsson, M. Cooper, C. Heusser and A. Coutinho. 1986. Autonomous activation of B and T cells in antigen-free mice.Eur. J. Immunol. 16, 685–688.

    Google Scholar 

  • Perelson, A. S. 1981. Receptor clustering on a cell surface. III. Theory of receptor cross-linking by multivalent ligands: Description by ligand states.Math. Biosci. 53, 1–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Perelson, A. S. 1984. Some mathematical models of receptor clustering by multivalent antigens. In:Cell Surface Dynamics: Concepts and Models. A. S. Perelson, C. DeLisi and F. W. Wiegel (Eds), pp. 223–276. Marcel Dekker: New York.

    Google Scholar 

  • Perelson, A. S. 1988.Theoretical Immunology, A. S. Perelson (Ed.), Part 2, SFI Studies in the Science of Complexity, Vol. III. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Perelson, A. S. 1989. Immune network theory.Immunol. Rev. 110, 5–36.

    Article  Google Scholar 

  • Perelson, A. S. and C. DeLisi. 1980. Receptor clustering on a cell surface. I. Theory of receptor cross-linking by ligands bearing two chemically identical functional groups.Math. Biosci. 48, 71–110.

    Article  MATH  MathSciNet  Google Scholar 

  • Perelson, A. S. and G. Weisbuch. 1992. Modeling immune reactivity in secondary lymphoid organs.Bull. math. Biol. 54, 649–672.

    Article  MATH  Google Scholar 

  • Richter, P. H. 1975. A network theory of the immune system.Eur. J. Immunol. 5, 350–354.

    Google Scholar 

  • Richter, P. H. 1978. The network idea and the immune response. In:Theoretical Immunology. G. I. Bell, A. S. Perelson and G. H. Pimbley Jr (Eds). New York: Marcel Dekker.

    Google Scholar 

  • Segel, L. A. and A. S. Perelson. 1988. Computations in shape space. A new approach to immune network theory. In:Theoretical Immunology. A. S. Perelson (Ed.), Part 1, pp. 349–382, SFI Studies in the Sciences of Complexity. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Segel, L. A. and A. S. Perelson. 1989. Shape space analysis of immune networks. in:Cell to Cell Signalling: From Experiments to Theoretical Models. A. Goldbeter (Ed.), pp. 273–283. New York: Academic Press.

    Google Scholar 

  • Segel, L. A. and A. S. Perelson. 1991. Exploiting the diversity of time scales in the immune system: A B-cell antibody model.J. statisc. Phys. 63, 1113–1131.

    Article  Google Scholar 

  • Sprent, J. 1989. T lymphocytes and the thymus. In:Fundamental Immunology. W. E. Paul (Ed.), pp. 69–93. New York: Raven Press.

    Google Scholar 

  • Stewart, J. and F. J. Varela. 1989. Exploring the meaning of connectivity in the immune network.Immunol. Rev. 110, 37–61.

    Article  Google Scholar 

  • Stewart, J. and F. J. Varela. 1990. Dynamics of a class of immune networks. II. Oscillatory activity of cellular and humoral components.J. theor. Biol. 144, 103–115.

    MathSciNet  Google Scholar 

  • Strand, F. L. 1978.Physiology, p. 559. New York: Macmillan.

    Google Scholar 

  • Varela, F. J. and A. Coutinho. 1991. Second generation immune networks.Immunol. Today 12, 159–166.

    Google Scholar 

  • Varela, F. J., A. Anderson, G. Dietrich, A. Sundblad, D. Holmberg, M. Kazatchkine and A. Coutinho. 1991. The population dynamics of natural antibodies in normal and autoimmune individuals.Proc. Natn. Acad. Sci. USA 88, 5917–5921.

    Article  Google Scholar 

  • Vaz, N. N. and F. J. Varela. 1978. Self and non-sense: an organism-centered approach to immunology.Med Hypoth. 4, 231–267.

    Article  Google Scholar 

  • Weisbuch, G., R. J. De Boer and A. S. Perelson. 1990. Localized memories in idiotypic networks.J. theor. Biol. 146, 483–499.

    Google Scholar 

  • Weiss, L. (1972).The Cells and Tissues of the Immune System. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Boer, R.J., Perelson, A.S. & Kevrekidis, I.G. Immune network behavior—I. From stationary states to limit cycle oscilations. Bltn Mathcal Biology 55, 745–780 (1993). https://doi.org/10.1007/BF02460672

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460672

Keywords

Navigation