Skip to main content

Influent Fractionation for Modeling Continuous Anaerobic Digestion Processes

  • Chapter
  • First Online:
Biogas Science and Technology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 151))

Abstract

The first dynamic model developed to describe anaerobic digestion processes dates back to 1969. Since then, considerable improvements in identifying the underlying biochemical processes and associated microorganisms have been achieved. These have led to an increasing complexity of both model structure and the standard set of stoichiometric and kinetic parameters. Literature has always paid attention to kinetic parameter estimation, as this determines model accuracy with respect to predicting the dynamic behavior of biogas systems. As sufficient computing power is easily available nowadays, sophisticated linear and nonlinear parameter estimation techniques are applied to evaluate parameter uncertainty. However, the uncertainty of influent fractionation in these parameter optimization procedures is generally neglected. As anaerobic digestion systems are currently increasingly used to convert a broad variety of organic biomass to methane, the lack of generally accepted guidelines for input characterization adapted to the simulation model’s characteristics is a considerable limitation of model application to these substrates. Directly after the introduction of the standardized Anaerobic Digestion Model No. 1 (ADM1), several publications pointed out that the model’s requirement of a detailed influent characterization can hardly be fulfilled. The main shortcoming of the model application was addressed in the reliable and practical identification of the model’s input state variables for particulate and soluble carbohydrates, proteins and lipids, as well as for the inerts. Several authors derived biomass characterization procedures, most of them dedicated to a particular substrate, and some of them being of general nature, but none of these approaches have resulted in a practical standard protocol so far. This review provides an overview of existing approaches that improve substrate influent characterization to be used for state of the art anaerobic digestion models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews JF (1996) Dynamic model of the anaerobic digestion process. ASCE J Sanit Eng Div 95:95–116

    Google Scholar 

  2. Husain A (1998) Mathematical models of the kinetics of anaerobic digestion—A selected review. Biomass Bioenergy 14:561–571

    Article  CAS  Google Scholar 

  3. Saravanan V, Sreekrishnan TR (2006) Modelling anaerobic biofilm reactors—A review. J Environ Manage 81:1–18

    Article  CAS  Google Scholar 

  4. Donoso-Bravo A, Mailier J, Martin C, Rodríguez J, Aceves-Lara CA, Vande Wouwer A (2011) Model selection, identification and validation in anaerobic digestion: a review. Water Res 45:5347–5364

    Google Scholar 

  5. Tomei MC, Braguglia CM, Cento G, Mininni G (2009) Modeling of anaerobic digestion of sludge. Crit Rev Environ Sci Technol 39:1003–1051

    Article  CAS  Google Scholar 

  6. Lübken M, Gehring T, Wichern M (2010) Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling. Appl Microbiol Biotechnol 85:1643–1652

    Article  Google Scholar 

  7. Batstone DJ (2006) Mathematical modelling of anaerobic reactors treating domestic wastewater: Rational criteria for model use. Rev Environ Sci Biotechnol 5:57–71

    Article  CAS  Google Scholar 

  8. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci Technol 45:65–73

    CAS  Google Scholar 

  9. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic digestion model no. 1 (ADM1). IWA Publishing, London, UK

    Google Scholar 

  10. Holm-Nielsen JB, Dahl CK, Esbensen KH (2006) Representative sampling for process analytical characterization of heterogeneous bioslurry systems—a reference study of sampling issues in PAT. Chemom Intell Lab Syst 83:114–126

    Article  CAS  Google Scholar 

  11. García-Gen S, Lema JM, Rodríguez J (2013) Generalised modelling approach for anaerobic co-digestion of fermentable substrates. Bioresour Technol 147:525–533

    Article  Google Scholar 

  12. Fezzani B, Ben Cheikh R (2009) Extension of the anaerobic digestion model No. 1 (ADM1) to include phenol compounds biodegradation processes for simulating the anaerobic co-digestion of olive mill wastes at mesophilic temperature. J Hazard Mater 172:1430–1438

    Article  CAS  Google Scholar 

  13. Fedorovich V, Lens P, Kalyuzhnyi S (2003) Extension of anaerobic digestion model no. 1 with processes of sulfate reduction. Appl Biochem Biotechnol 109:33–45

    Article  CAS  Google Scholar 

  14. Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  15. Lübken M, Koch K, Gehring T, Horn H, Wichern M (2015) Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation. Appl Energy 142:352–360

    Article  Google Scholar 

  16. Girault R, Bridoux G, Nauleau F, Poullain C, Buffet J, Steyer JP, Sadowski AG, Béline F (2012) A waste characterisation procedure for ADM1 implementation based on degradation kinetics. Water Res 46:4099–110

    Google Scholar 

  17. Kleerebezem R, Van Loosdrecht MCM (2006) Waste characterization for implementation in ADM1. Water Sci Technol 54:167–174

    Article  CAS  Google Scholar 

  18. Zaher U, Chen S (2006) Interfacing the IWA anaerobic digestion model no 1 (ADM1) with manure and solid waste characteristics. Water Environ Found 1:3162–3175

    Google Scholar 

  19. Huete E, de Gracia M, Ayesa E, Garcia-Heras JL (2006) ADM1-based methodology for the characterisation of the influent sludge in anaerobic reactors. Water Sci Technol 54:157–166

    Article  CAS  Google Scholar 

  20. Boe K, Steyer JP, Angelidaki I (2008) Monitoring and control of the biogas process based on propionate concentration using online VFA measurement. Water Sci Technol 57:661–666

    Article  CAS  Google Scholar 

  21. Boe K, Batstone DJ, Steyer JP, Angelidaki I (2010) State indicators for monitoring the anaerobic digestion process. Water Res 44:5973–5980

    Google Scholar 

  22. Nacke T, Brückner K, Göller A, Kaufhold S, Nakos X, Noack S, Stöber H, Beckmann D (2005) New type of dry substances content meter using microwaves for application in biogas plants. Anal Bioanal Chem 383:752–757

    Article  CAS  Google Scholar 

  23. Triolo JM, Ward AJ, Pedersen L, Løkke MM, Qu H, Sommer SG (2014) Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass. Appl Energy 116:52–57

    Article  CAS  Google Scholar 

  24. Jacobi HF, Ohl S, Thiessen E, Hartung E (2012) NIRS-aided monitoring and prediction of biogas yields from maize silage at a full-scale biogas plant applying lumped kinetics. Bioresour Technol 103:162–172

    Article  CAS  Google Scholar 

  25. Copp JB, Jeppsson U, Rosen C (2003) Towards an ASM1—ADM1 state variable interface for plant-wide wastewater treatment modeling. In: Proceedings of the 76th annual WEF conference Expo pp 498–510

    Google Scholar 

  26. Wett B, Eladawy A, Ogurek M (2006) Description of nitrogen incorporation and release in ADM1. Water Sci Technol 54:67–76

    Article  CAS  Google Scholar 

  27. Zaher U, Buffiere P, Steyer JP, Chen S (2009) A procedure to estimate proximate analysis of mixed organic wastes. Water Environ Res 81:407–415

    Article  CAS  Google Scholar 

  28. Nopens I, Batstone DJ, Copp JB, Jeppsson U, Volcke E, Alex J, Vanrolleghem PA (2009) An ASM/ADM model interface for dynamic plant-wide simulation. Water Res 43:1913–1923

    Article  CAS  Google Scholar 

  29. Yasui H, Goel R, Li YY, Noike T (2008) Modified ADM1 structure for modelling municipal primary sludge hydrolysis. Water Res 42:249–59

    Google Scholar 

  30. Girault R, Steyer JP, Zaher U, Sadowski AG, Nopens I, Béline F, Kujawski O, Holm NC, Rönner-Holm SGE (2010) Influent fractionation and parameter calibration for ADM1 : lab-scale and full-scale experiments. Wastewater treatment modelling seminar, Mont-Sainte-Anne, Canada, March 28–30

    Google Scholar 

  31. Lübken M, Wichern M, Schlattmann M, Gronauer A, Horn H (2007) Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops. Water Res 41:4085–4096

    Google Scholar 

  32. Wichern M, Gehring T, Fischer K, Andrade D, Lübken M, Koch K, Gronauer A, Horn H (2009) Monofermentation of grass silage under mesophilic conditions: Measurements and mathematical modeling with ADM 1. Bioresour Technol 100:1675–1681

    Article  CAS  Google Scholar 

  33. Koch K, Lübken M, Gehring T, Wichern M, Horn H (2010) Biogas from grass silage—Measurements and modeling with ADM1. Bioresour Technol 101:8158–8165

    Article  CAS  Google Scholar 

  34. Gossett JM, Belser RL (1982) Anaerobic digestion of waste activated sludge. J Environ Eng Div ASCE 108:1101–1120

    CAS  Google Scholar 

  35. Kampas P, Parsons SA, Pearce P, Ledoux S, Vale P, Churchley J, Cartmell E (2007) Mechanical sludge disintegration for the production of carbon source for biological nutrient removal. Water Res 41:1734–42

    Google Scholar 

  36. Kim M, Ahn YH, Speece R (2002) Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res 36:4369–4385

    Article  CAS  Google Scholar 

  37. Parravicini V, Svardal K, Hornek R, Kroiss H (2008) Aeration of anaerobically digested sewage sludge for COD and nitrogen removal: optimization at large-scale. Water Sci Technol 57:257–264

    Google Scholar 

  38. Münch E, Keller J, Lant P, Newell R (1999) Mathematical modelling of prefermenters—I. Model development and verification. Water Res 33:2757–2768

    Google Scholar 

  39. Rice EW, Baird RB, Eaton AD, Clesceri LS (2012) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  40. VDI 4630 (2006) Fermentation of organic materials—Characterisation of the substrate, sampling, collection of material data, fermentation tests. Verein Deutscher Ingenieure, Düsseldorf, Germany

    Google Scholar 

  41. Kreuger E, Nges IA, Björnsson L (2011) Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels 4:44

    Article  CAS  Google Scholar 

  42. Ekama GA (2009) Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model. Water Res 43:2101–2120

    Google Scholar 

  43. Koch K, Drewes JE (2014) Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data. Appl Energy 120:11–15

    Article  Google Scholar 

  44. Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Bio/Technology 3:117–129

    Article  CAS  Google Scholar 

  45. Jimenez J, Gonidec E, Cacho Rivero JA, Latrille E, Vedrenne F, Steyer JP (2014) Prediction of anaerobic biodegradability and bioaccessibility of municipal sludge by coupling sequential extractions with fluorescence spectroscopy: towards ADM1 variables characterization. Water Res 50:359–372

    Google Scholar 

  46. Lesteur M, Bellon-Maurel V, Gonzalez C, Latrille E, Roger JM, Junqua G, Steyer JP (2010) Alternative methods for determining anaerobic biodegradability: a review. Process Biochem 45:431–440

    Article  CAS  Google Scholar 

  47. Ekama GA, Dold PL (1986) Procedures for determining influent cod fractions and the maximum specific growth rate of heterotrophs in activated sludge systems. Water Sci Technol 18:91–114

    CAS  Google Scholar 

  48. Wichern M, Lübken M, Blömer R, Rosenwinkel KH (2003) Efficiency of the Activated Sludge Model no. 3 for German wastewater on six different WWTPs. Water Sci Technol 47:211–218

    CAS  Google Scholar 

  49. Blumensaat F, Keller J (2005) Modelling of two-stage anaerobic digestion using the IWA anaerobic digestion model no. 1 (ADM1). Water Res 39:171–183

    Article  CAS  Google Scholar 

  50. Boubaker F, Ridha BC (2008) Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model no. 1 (ADM1). Bioresour Technol 99:6565–6577

    Article  CAS  Google Scholar 

  51. Lettinga G, Hulshoff Pol LW (1991) UASB-Process design for various types of wastewaters. Water Sci Technol 24:87–107

    CAS  Google Scholar 

  52. Hinken L, Huber M, Weichgrebe D, Rosenwinkel KH (2014) Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests. Water Res 64:82–93

    Article  CAS  Google Scholar 

  53. Healy JB, Young LY (1979) Anaerobic biodegradation of eleven aromatic compounds to methane. Appl Environ Microbiol 38:84–89

    CAS  Google Scholar 

  54. Heider J, Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596

    Article  CAS  Google Scholar 

  55. Hongwei Y, Zhanpeng J, Shaoqi S (2004) Anaerobic biodegradability of aliphatic compounds and their quantitative structure biodegradability relationship. Sci Total Environ 322:209–219

    Google Scholar 

  56. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Google Scholar 

  57. Delgadillo-Mirquez L, Lardon L, Steyer JP, Patureau D (2011) A new dynamic model for bioavailability and cometabolism of micropollutants during anaerobic digestion. Water Res 45:4511–4121

    Google Scholar 

  58. Naumann C, Bassler R (2004) Handbuch der landwirtschaftlichen Versuchs- und Untersuchungsmethodik: (Methodenbuch), vol 3. neu bearbeitete Auflage, VDLUFA-Verlag, Darmstadt, Germany

    Google Scholar 

  59. Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc Off Anal Chem 50–59

    Google Scholar 

  60. Grieder C, Mittweg G, Dhillon BS, Montes JM, Orsini E, Melchinger AE (2012) Kinetics of methane fermentation yield in biogas reactors: Genetic variation and association with chemical composition in maize. Biomass Bioenergy 37:132–141

    Article  CAS  Google Scholar 

  61. Schönberg M, Linke B (2012) The influence of the temperature regime on the formation of methane in a two-phase anaerobic digestion process. Eng Life Sci 12:279–286

    Article  Google Scholar 

  62. Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agric Ecosyst Environ 118:173–182

    Article  CAS  Google Scholar 

  63. Wichern M, Lübken M, Horn H, Schlattmann M, Gronauer A (2008) Investigations and mathematical simulation on decentralized anaerobic treatment of agricultural substrate from livestock farming. Water Sci Technol 58:67–72

    Article  CAS  Google Scholar 

  64. Biernacki P, Steinigeweg S, Borchert A, Uhlenhut F, Brehm A (2013) Application of anaerobic digestion model no. 1 for describing an existing biogas power plant. Biomass Bioenergy 59:441–447

    Article  CAS  Google Scholar 

  65. Biernacki P, Steinigeweg S, Borchert A, Uhlenhut F (2013) Application of anaerobic digestion model no. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine. Bioresour Technol 127:188–94

    Google Scholar 

  66. Myint M, Nirmalakhandan N, Speece RE (2007) Anaerobic fermentation of cattle manure: modeling of hydrolysis and acidogenesis. Water Res 41:323–332

    Google Scholar 

  67. Orhon D, Çokgör EU, Sözen S (1998) Dual hydrolysis model of the slowly biodegradable substrate in activated sludge systems. Biotechnol Tech 12:737–741

    Article  CAS  Google Scholar 

  68. Fernandez I, Mahieu N, Cadisch G (2003) Carbon isotopic fractionation during decomposition of plant materials of different quality. Global Biogeochem Cycles 17:1–9

    Google Scholar 

  69. Gehring T, Klang J, Niedermayr A, Berzio S, Immenhauser A, Klocke M, Wichern M, Lübken M (2015) Determination of methanogenic pathways through carbon isotope (δ13C) analysis for the two-stage anaerobic digestion of high-solids substrates. Environ Sci Technol. doi:10.1021/es505665z

    Google Scholar 

  70. Koch K, Wichern M, Lübken M, Horn H (2009) Mono fermentation of grass silage by means of loop reactors. Bioresour Technol 100:5934–5940

    Google Scholar 

  71. Batstone DJ, Tait S, Starrenburg D (2009) Estimation of hydrolysis parameters in full-scale anerobic digesters. Biotechnol Bioeng 102:1513–1520

    Google Scholar 

  72. Madigan MT (2012) Brock biology of microorganisms, 13th edn. International Microbiology. doi:10.1016/B978-1-4832-3136-5.50010-3

    Google Scholar 

  73. Henze M, Van Loosdrecht MCM, Ekama GA, Brdjanovic D (2008) Biological wastewater treatment : principles, modelling and design. IWA Publishing, London

    Google Scholar 

  74. Fan K, Wang W (2003) What is the minimum number of letters required to fold a protein? J Mol Biol 328:921–926

    Article  CAS  Google Scholar 

  75. Nanni L, Brahnam S, Lumini A (2014) Prediction of protein structure classes by incorporating different protein descriptors into general Chou’s pseudo amino acid composition. J Theor Biol 360:109–116

    Article  CAS  Google Scholar 

  76. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  77. Luque de Castro MD, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217:2383–2389

    Article  CAS  Google Scholar 

  78. Luque de Castro MD, García-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10

    Article  CAS  Google Scholar 

  79. Manirakiza P, Covaci A, Schepens P (2001) Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and Modified Bligh & Dyer extraction methods. J Food Compos Anal 14:93–100

    Article  CAS  Google Scholar 

  80. Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    Article  CAS  Google Scholar 

  81. Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424

    Article  CAS  Google Scholar 

  82. Bauer S, Ibáñez AB (2014) Rapid determination of cellulose. Biotechnol Bioeng 111:2355–2357

    Article  CAS  Google Scholar 

  83. Eckenfelder WW, Weston RF (1956) Kinetics of biological oxidation. In: McCabe BJ, Eckenfelder WW (eds) Biological treatment of sewage and industrial wastes, vol 1. Reinhold Publ. Co., New York, USA, pp 18–34

    Google Scholar 

  84. Servizi JA, Bogan RH (1963) Free energy as a parameter in biological treatment. J San Eng Div, ASCE 63:17–40

    Google Scholar 

  85. Kleerebezem R, van Loosdrecht MCM (2006) Critical analysis of some concepts proposed in ADM1. Water Sci Technol 54:51–57

    Article  CAS  Google Scholar 

  86. Rodríguez J, Lema JM, van Loosdrecht MCM, Kleerebezem R (2006) Variable stoichiometry with thermodynamic control in ADM1. Water Sci Technol 54:101–110

    Article  Google Scholar 

  87. Penumathsa BKV, Premier GC, Kyazze G, Dinsdale R, Guwy AJ, Esteves S, Rodríguez J (2008) ADM1 can be applied to continuous bio-hydrogen production using a variable stoichiometry approach. Water Res 42:4379–4385

    Article  CAS  Google Scholar 

  88. Wallace JC, Lopes MA, Paiva E, Larkins BA (1990) New methods for extraction and quantitation of Zeins reveal a high content of gamma-Zein in modified opaque-2 maize. Plant Physiol 92:191–196

    Article  CAS  Google Scholar 

  89. Dennstedt M, Haßler F (1906) Über den Abbau von Eiweiß. Zeitschrift für Physiol Chemie 48:489–504

    Article  CAS  Google Scholar 

  90. Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–256

    Article  CAS  Google Scholar 

  91. Flotats X, Palatsi J, Ahring BK, Angelidaki I (2006) Identifiability study of the proteins degradation model, based on ADM1, using simultaneous batch experiments. Water Sci Technol 54:31–39

    Article  CAS  Google Scholar 

  92. Heger J, Salek M, Eggum BO (1990) Nutritional value of some Czechoslovak varieties of wheat, triticale and rye. Anim Feed Sci Technol 29:89–100

    Article  Google Scholar 

  93. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Google Scholar 

  94. Yuan XZ, Shi XS, Yuan CX, Wang YP, Qiu YL, Guo RB, Wang LS (2014) Modeling anaerobic digestion of blue algae: stoichiometric coefficients of amino acids acidogenesis and thermodynamics analysis. Water Res 49:113–123

    Google Scholar 

  95. Mu TH, Tan SS, Xue YL (2009) The amino acid composition, solubility and emulsifying properties of sweet potato protein. Food Chem 112:1002–1005

    Article  CAS  Google Scholar 

  96. Angelidaki I, Ahring BK (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res 28:727–731

    Article  CAS  Google Scholar 

  97. Lübken M, Wichern M, Letsiou I, Kehl O, Bischof F, Horn H (2007) Thermophilic anaerobic digestion in compact systems: investigations by modern microbiological techniques and mathematical simulation. Water Sci Technol 56:19–28

    Article  Google Scholar 

  98. Lübken M, Wichern M, Bischof F, Prechtl S, Horn H (2007) Development of an empirical mathematical model for describing and optimizing the hygiene potential of a thermophilic anaerobic bioreactor treating faeces. Water Sci Technol 55:95–102

    Article  Google Scholar 

  99. Girault R, Rousseau P, Steyer JP, Bernet N, Béline F (2011) Combination of batch experiments with continuous reactor data for ADM1 calibration: application to anaerobic digestion of pig slurry. Water Sci Technol 63:2575–2582

    Article  CAS  Google Scholar 

  100. Lebuhn M, Munk B, Effenberger M (2014) Agricultural biogas production in Germany—from practice to microbiology basics. Energy Sustain Soc 4:10

    Article  Google Scholar 

  101. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  102. Loehr RC (1974) Agricultural waste management—problems, processes, and approaches. Academic Press, New York, 576 pp

    Google Scholar 

  103. Mosey F (1983) Mathematical modeling of the anaerobic digestion process: Regulatory mechanisms for the formation of short chain volatile acids from glucose. Water Sci Technol 15:209–232

    CAS  Google Scholar 

  104. Kleerebezem R, Van Loosdrecht MCM (2010) A generalized method for thermodynamic state analysis of environmental systems. Crit Rev Environ Sci Technol 40:1–54

    Article  Google Scholar 

  105. Vanrolleghem PA, Rosen C, Zaher U, Copp J, Benedetti L, Ayesa E, Jeppsson U (2005) Continuity-based interfacing of models for wastewater systems described by Petersen matrices. Water Sci Technol 52:493–500

    CAS  Google Scholar 

  106. Ben M, Kennes C, Veiga MC (2013) Air pollution prevention and control: Bioreactors and bioenergy. In: Kennes C, Veiga MC (eds) Wiley-Blackwell, Chichester, 570 pp

    Google Scholar 

  107. Galí A, Benabdallah T, Astals S, Mata-Alvarez J (2009) Modified version of ADM1 model for agro-waste application. Bioresour Technol 100:2783–2790

    Article  Google Scholar 

  108. Feng Y, Behrendt J, Wendland C, Otterpohl R (2006) Parameter analysis of the IWA anaerobic digestion model no. 1 for the anaerobic digestion of blackwater with kitchen refuse. Water Sci Technol 54:139–147

    Article  CAS  Google Scholar 

  109. Ersahin ME, Insel G, Dereli RK, Ozturk I, Kinaci C (2007) Model based evaluation for the anaerobic treatment of corn processing wastewaters. CLEAN–Soil. Air, Water 35:576–581

    Article  CAS  Google Scholar 

  110. Mairet F, Bernard O, Ras M, Lardon L, Steyer JP (2011) Modeling anaerobic digestion of microalgae using ADM1. Bioresour Technol 102:6823–6829

    Article  CAS  Google Scholar 

  111. Kalfas H, Skiadas IV, Gavala HN, Stamatelatou K, Lyberatos G (2006) Application of ADM1 for the simulation of anaerobic digestion of olive pulp under mesophilic and thermophilic conditions. Water Sci Technol 54:149–156

    Article  CAS  Google Scholar 

  112. Dereli RK, Ersahin ME, Ozgun H, Ozturk I, Aydin AF (2010) Applicability of anaerobic digestion model no. 1 (ADM1) for a specific industrial wastewater: opium alkaloid effluents. Chem Eng J 165:89–94

    Article  CAS  Google Scholar 

  113. Jurado E, Gavala HN, Skiadas I (2012) ADM1-based modeling of anaerobic digestion of swine manure fibers pretreated with aqueous ammonia soaking. In: Proceedings of the 4th international symposium on energy from biomass and waste, San Servolo, Venice, Italy, 12–15 Nov 2012

    Google Scholar 

  114. Ramirez I, Mottet A, Carrère H, Déléris S, Vedrenne F, Steyer JP (2009) Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Water Res 43:3479–3492

    Google Scholar 

  115. Ramirez I, Steyer JP (2008) Modeling microbial diversity in anaerobic digestion. Water Sci Technol 57:265–270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Lübken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lübken, M., Kosse, P., Koch, K., Gehring, T., Wichern, M. (2015). Influent Fractionation for Modeling Continuous Anaerobic Digestion Processes. In: Guebitz, G., Bauer, A., Bochmann, G., Gronauer, A., Weiss, S. (eds) Biogas Science and Technology. Advances in Biochemical Engineering/Biotechnology, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-21993-6_6

Download citation

Publish with us

Policies and ethics