Skip to main content

Integrating Context Similarity with Sparse Linear Recommendation Model

  • Conference paper
  • First Online:
User Modeling, Adaptation and Personalization (UMAP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9146))

Abstract

Context-aware recommender systems extend traditional recommender systems by adapting their output to users’ specific contextual situations. Most of the existing approaches to context-aware recommendation involve directly incorporating context into standard recommendation algorithms (e.g., collaborative filtering, matrix factorization). In this paper, we highlight the importance of context similarity and make the attempt to incorporate it into context-aware recommender. The underlying assumption behind is that the recommendation lists should be similar if their contextual situations are similar. We integrate context similarity with sparse linear recommendation model to build a similarity-learning model. Our experimental evaluation demonstrates that the proposed model is able to outperform several state-of-the-art context-aware recommendation algorithms for the top-N recommendation task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender systems. AI Magazine 32(3), 67–80 (2011)

    Google Scholar 

  2. Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context aware recommendation. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 301–304. ACM (2011)

    Google Scholar 

  3. Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 79–86. ACM (2010)

    Google Scholar 

  4. Ning, X., Karypis, G.: SLIM: sparse linear methods for top-n recommender systems. In: 2011 IEEE 11th International Conference on Data Mining, pp. 497–506. IEEE (2011)

    Google Scholar 

  5. Zheng, Y., Burke, R., Mobasher, B.: Recommendation with differential context weighting. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 152–164. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Zheng, Y., Burke, R., Mobasher, B.: Splitting approaches for context-aware recommendation: an empirical study. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 274–279. ACM (2014)

    Google Scholar 

  7. Zheng, Y., Mobasher, B., Burke, R.: Deviation-based contextual SLIM recommenders. In: Proceedings of the 23rd ACM Conference on Information and Knowledge Management, pp. 271–280. ACM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zheng, Y., Mobasher, B., Burke, R. (2015). Integrating Context Similarity with Sparse Linear Recommendation Model. In: Ricci, F., Bontcheva, K., Conlan, O., Lawless, S. (eds) User Modeling, Adaptation and Personalization. UMAP 2015. Lecture Notes in Computer Science(), vol 9146. Springer, Cham. https://doi.org/10.1007/978-3-319-20267-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20267-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20266-2

  • Online ISBN: 978-3-319-20267-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics