Skip to main content

Nitric Oxide Impact on Plant Adaptation to Transition Metal Stress

  • Chapter
  • First Online:
Nitric Oxide Action in Abiotic Stress Responses in Plants

Abstract

Nitric oxide (NO), a gaseous bioactive messenger molecule, regulates diverse array of physiological processes ranging from seed germination, growth, flowering to the biotic and abiotic stress responses. Transition metals such as manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni) copper (Cu), and zinc (Zn) are essential micronutrient for normal growth and development of living organisms. Although essential in trace amounts, at higher levels these metals can be toxic to cells because they directly or indirectly influence DNA, protein, and membrane integrity and function. The biological actions of NO and its derivatives exerted through the binding to transition metals of metalloproteins, and covalent modifications of cysteine and tyrosine residues. The presence of transition metal influences the endogenous NO levels and thereby modulates several metabolic processes. Depending on the type of plant tissue and concentrations, the NO can elicit both beneficial and deleterious effects. Recently, several articles have proclaimed the alleviation of transition metal toxicity by exogenous application of NO. The present article discusses the recent understanding of the endogenous and exogenous NO to essential transition metal tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Kader DZE (2007) Role of nitric oxide, glutathione and sulfhydryl groups in zinc homeostasis in plants. Amer J Plant Physiol 2:59–75

    Article  CAS  Google Scholar 

  • Andrews SC, Smith JMA, Yewdall JR et al (1991) Bacterioferritins and ferritins are distantly related in evolution. FEBS Lett 293:164–168

    Article  CAS  PubMed  Google Scholar 

  • Arnaud N, Murgia I, Boucherez J et al (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23579–23588

    Article  CAS  PubMed  Google Scholar 

  • Bartha B, Kolbert Z, Erdei L (2005) Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L. Acta Biol Szeged 49:9–12

    Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inze D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP et al (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Buet A, Moriconi JI, Santa-María GE, Simontacchi M (2014) An exogenous source of nitric oxide modulates zinc nutritional status in wheat plants. Plant Physiol Biochem 83:337–345

    Article  CAS  PubMed  Google Scholar 

  • Casano LM, Gomez LD, Lascano HR et al (1997) Inactivation and degradation of Cu Zn-SOD by active oxygen species in wheat chloroplasts exposed to photo-oxidative stress. Plant Cell Physiol 38:433–440

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Desikan R, Hurst RD et al (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 4:667–677

    Article  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A et al (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    Article  CAS  PubMed  Google Scholar 

  • Cui XM, Zhang YK, Wu XB, Liu CS (2010) The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants. Plant Soil Environ 56:274–281

    CAS  Google Scholar 

  • Degtyarenko K (2000) Bioinorganic motifs: towards functional classification of metalloproteins. Bioinformatics 16:851–864

    Article  CAS  PubMed  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Xu L, Wang Q et al (2014) Effects of exogenous nitric oxide on photosynthesis, antioxidative ability, and mineral element contents of perennial ryegrass under copper stress. J Plant Inter 9:402–411

    Google Scholar 

  • Duan X, Li X, Ding F et al (2015) Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress. Ecotoxicol Environ Saf 113:95–102

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendenhenne D, Klessig DF (1998) Defence gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Nat Acad Sci USA 95:10328–10333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feigl G, Lehotai N, Molnár A et al (2014) Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot. doi:10.1093/aob/mcu246

    PubMed  Google Scholar 

  • Ferrer MA, Barcelo AR (1999) Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans. Plant Cell Environ 22:891–897

    Article  CAS  Google Scholar 

  • Floryszak-Wieczorek J, Milczarek G, Arasimowicz M, Ciszewski A (2006) Do nitric oxide donors mimic an endogenous NO-related response in plant. Planta 224:1363–1372

    Article  CAS  PubMed  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659

    Article  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1999) Effect of cadmium ions on antioxidative defense system in sunflower cotyledons. Biol Plant 42:49–55

    Article  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2003) Abscisic acid, nitric oxide and stomatal closure; is nitrate reductase one of the missing links? Trends Plant Sci 8:20–26

    Article  CAS  PubMed  Google Scholar 

  • Graziano M, Lamattina L (2007) Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J 52:949–960

    Article  CAS  PubMed  Google Scholar 

  • Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130:1852–1859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  CAS  PubMed  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochem Biophys Acta 1275:161–203

    PubMed  Google Scholar 

  • Hsu YT, Kao CH (2004) Cd toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:27–238

    Article  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu K-D, Hu L-Y, Li Y-H et al (2007) Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul 53:173–183

    Article  CAS  Google Scholar 

  • Hung KT, Kao CH (2003) Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J Plant Physiol 160:871–879

    Article  CAS  PubMed  Google Scholar 

  • Jin CW, Du ST, Shamsi IH et al (2011) NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. J Exp Bot 62:3875–3884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kazemi N (2012) Effect of exogenous nitric oxide on alleviating nickel-induced oxidative stress in leaves of tomato plants. Inter J Agri Sci 2:799–809

    CAS  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H et al (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hort 126:402–407

    Article  CAS  Google Scholar 

  • Kong J, Dong Y, Xua L et al (2014) Role of exogenous nitric oxide in alleviating iron deficiency-induced peanut chlorosis on calcareous soil. J Plant Interact 9:450–459

    Article  Google Scholar 

  • Kováčika K, Babul P, Hedbavny J, Šveca P (2014) Manganese-induced oxidative stress in two ontogenetic stages of chamomile and amelioration by nitric oxide. Plant Sci 215–216:1–10

    Google Scholar 

  • Kumar P, Tewari RK, Sharma PN (2010) Sodium nitroprusside-mediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. AoB plants 2010:plq002

    Article  PubMed Central  PubMed  Google Scholar 

  • Lamattina L, Garcia-Matta C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protect sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Leonard SS, Harris GK, Shi XL (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942

    Article  CAS  PubMed  Google Scholar 

  • Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas—nitric oxide (NO)—as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Lobreaux S, Yewdall S, Briat JF, Harrison PM (1992) Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin. Biochem J 288:931–939

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maksymiek W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martin M, Colman MJR, Go’mez-Casati DF et al (2009) Nitric oxide accumulation is required to protect against iron mediated oxidative stress in frataxin-deficient Arabidopsis plants. FEBS Lett 583:542–548

    Article  CAS  PubMed  Google Scholar 

  • Meng ZB, Chen LQ, Suo D et al (2012) Nitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus). Ann Bot 109:1055–1064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mihailovic N, Drazic G (2011) Incomplete alleviation of nickel toxicity in bean by nitric oxide supplementation. Plant Soil Environ 57:396–401

    Article  CAS  Google Scholar 

  • Mill AC, Bennett JH (1970) Inhibition of apparent photosynthesis by nitrogen oxides. Atmos Environ 4:341–348

    Article  Google Scholar 

  • Misra AN, Misra M, Singh R (2011) Nitric oxide: a ubiquitous signaling molecule with diverse role in plants. Afr J Plant Sci 5:57–74

    CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Seraj ZI, Fujita M (2014) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251:1373–1386

    Article  CAS  PubMed  Google Scholar 

  • Murgia I, Delledonne M, Soave C (2002) Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant J 30:521–528

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term ‘heavy metal’ by a biologically significant and chemically classification of metal ions. Environ Pollut B1:3–26

    Article  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Pető A, Lehotai N, Feigl G et al (2013) Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis. Plant Cell Rep 32:1913–1923

    Article  PubMed  Google Scholar 

  • Prado AM, Porterfield DM, Feijo´ JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2715

    Article  CAS  PubMed  Google Scholar 

  • Prouhdon D, Wei J, Theil EC (1996) Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints. J Mol Evol 42:325–336

    Article  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma PN, Kumar P, Tewari RK (2004) Early signs of oxidative stress in wheat plants subjected to zinc deficiency. J Plant Nutr 27:449–461

    Article  Google Scholar 

  • Srivastava S, Dubey RS (2012) Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves. Acta Physiol Plant 34:819–825

    Article  CAS  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Hahn EJ, Paek KY (2008) Modulation of copper toxicity induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep 27:171–181

    Article  CAS  PubMed  Google Scholar 

  • Todeschini V, Lingua G, D’Agostino G et al (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environ Exp Bot 71:50–56

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Van de Mortel JE, Almar Villanueva L, Schat H et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Zhang SH, Wang PF et al (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75:1468–1476

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Zhang H, Jiang SJ et al (2010) Effects of the nitric oxide donor sodium nitroprusside on antioxidant enzymes in wheat seedling roots under nickel stress. Russ J Plant Physiol 57:833–839

    Article  CAS  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Rad Biol Med 25:434–456

    Article  CAS  PubMed  Google Scholar 

  • Wintz H, Fox T, Wu YY et al (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  CAS  PubMed  Google Scholar 

  • Wo´jcik M, Sko´rzynska-Poli E, Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48:145–155

    Article  Google Scholar 

  • Wojtaszek P (2000) Nitric oxide in plants. To NO or not to NO. Phytochem 54:1–4

    Article  CAS  Google Scholar 

  • Xiong J, Fu G, Tao L, Zhu C (2009) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophy 497:13–20

    Article  Google Scholar 

  • Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan R, Gao S, Yang W et al (2008) Nickel toxicity induced antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. cotyledons. Plant Soil Environ 54:294–300

    CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz. J Plant Physiol 17:145–146

    Article  CAS  Google Scholar 

  • Zhang XW, Dong YJ, Qiu XK et al (2012) Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil. Plant Soil Environ 58:111–120

    CAS  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support by Deanship of Scientific Research, University of Tabuk, Saudi Arabia to Dr. Mohammad Mobin (Grant no. S-1435-0019) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mobin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mobin, M., Khan, M.N., Abbas, Z.K. (2015). Nitric Oxide Impact on Plant Adaptation to Transition Metal Stress. In: Khan, M., Mobin, M., Mohammad, F., Corpas, F. (eds) Nitric Oxide Action in Abiotic Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-17804-2_10

Download citation

Publish with us

Policies and ethics