Skip to main content

Conformant Planning as a Case Study of Incremental QBF Solving

  • Conference paper
Artificial Intelligence and Symbolic Computation (AISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8884))

Abstract

We consider planning with uncertainty in the initial state as a case study of incremental quantified Boolean formula (QBF) solving. We report on experiments with a workflow to incrementally encode a planning instance into a sequence of QBFs. To solve this sequence of successively constructed QBFs, we use our general-purpose incremental QBF solver DepQBF. Since the generated QBFs have many clauses and variables in common, our approach avoids redundancy both in the encoding phase and in the solving phase. Experimental results show that incremental QBF solving outperforms non-incremental QBF solving. Our results are the first empirical study of incremental QBF solving in the context of planning and motivate its use in other application domains.

Supported by the Austrian Science Fund (FWF) under grants S11409-N23 and P25518-N23 and the German Research Foundation (DFG) under grant ER 738/2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audemard, G., Lagniez, J.M., Simon, L.: Improving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1), 45–65 (2012)

    Article  MATH  Google Scholar 

  3. Baral, C., Kreinovich, V., Trejo, R.: Computational Complexity of Planning and Approximate Planning in the Presence of Incompleteness. Artificial Intelligence 122(1-2), 241–267 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Biere, A.: Resolve and Expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Biere, A., Lonsing, F., Seidl, M.: Blocked Clause Elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Blum, A., Furst, M.L.: Fast Planning Through Planning Graph Analysis. Artificial Intelligence 90(1-2), 281–300 (1997)

    Article  MATH  Google Scholar 

  7. Bubeck, U., Kleine Büning, H.: Bounded Universal Expansion for Preprocessing QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 244–257. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An Algorithm to Evaluate Quantified Boolean Formulae and Its Experimental Evaluation. Journal of Automated Reasoning 28(2), 101–142 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem-proving. Communications of the ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eén, N., Sörensson, N.: Temporal Induction by Incremental SAT Solving. Electronic Notes in Theoretical Computer Science 89(4), 543–560 (2003)

    Article  Google Scholar 

  11. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas. Journal of Artificial Intelligence Research 26, 371–416 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An Effective Preprocessor for QBFs Based on Equivalence Reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A Uniform Approach for Generating Proofs and Strategies for Both True and False QBF Formulas. In: Walsh, T. (ed.) IJCAI, pp. 546–553. AAAI Press (2011)

    Google Scholar 

  14. Heule, M., Seidl, M., Biere, A.: A Unified Proof System for QBF Preprocessing. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 91–106. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Hoffmann, J., Brafman, R.I.: Conformant planning via heuristic forward search: A new approach. Artificial Intelligence 170(6-7), 507–541 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Janota, M., Grigore, R., Marques-Silva, J.: On QBF Proofs and Preprocessing. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 473–489. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean Formulas. Information and Computation 117(1), 12–18 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kronegger, M., Pfandler, A., Pichler, R.: Conformant planning as a benchmark for QBF-solvers. In: Report Int. Workshop on Quantified Boolean Formulas (QBF 2013). pp. 1–5 (2013), http://fmv.jku.at/qbf2013/reportQBFWS13.pdf

  19. Kupferschmid, S., Lewis, M.D.T., Schubert, T., Becker, B.: Incremental Preprocessing Methods for Use in BMC. Formal Methods in System Design 39(2), 185–204 (2011)

    Article  MATH  Google Scholar 

  20. Lagniez, J.M., Biere, A.: Factoring Out Assumptions to Speed Up MUS Extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF Solving. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Lonsing, F., Egly, U.: Incremental QBF Solving. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 514–530. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  24. Lonsing, F., Egly, U.: Incremental QBF Solving by DepQBF. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 307–314. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  25. Lonsing, F., Egly, U., Van Gelder, A.: Efficient Clause Learning for Quantified Boolean Formulas via QBF Pseudo Unit Propagation. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Marin, P., Miller, C., Becker, B.: Incremental QBF Preprocessing for Partial Design Verification - (Poster Presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 473–474. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of Partial Designs using Incremental QBF Solving. In: Rosenstiel, W., Thiele, L. (eds.) DATE, pp. 623–628. IEEE (2012)

    Google Scholar 

  28. Nadel, A., Ryvchin, V., Strichman, O.: Ultimately Incremental SAT. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 206–218. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  29. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-Based Certificate Extraction for QBF - (Tool Presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Palacios, H., Geffner, H.: Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width. Journal of Artificial Intelligence Research 35, 623–675 (2009)

    MATH  MathSciNet  Google Scholar 

  31. Rintanen, J.: Asymptotically Optimal Encodings of Conformant Planning in QBF. In: Holte, R.C., Howe, A.E. (eds.) AAAI, pp. 1045–1050. AAAI Press (2007)

    Google Scholar 

  32. Seidl, M., Könighofer, R.: Partial witnesses from preprocessed quantified Boolean formulas. In: DATE, pp. 1–6. IEEE (2014)

    Google Scholar 

  33. Smith, D.E., Weld, D.S.: Conformant Graphplan. In: Mostow, J., Rich, C. (eds.) AAAI/IAAI, pp. 889–896. AAAI Press / The MIT Press (1998)

    Google Scholar 

  34. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Egly, U., Kronegger, M., Lonsing, F., Pfandler, A. (2014). Conformant Planning as a Case Study of Incremental QBF Solving. In: Aranda-Corral, G.A., Calmet, J., Martín-Mateos, F.J. (eds) Artificial Intelligence and Symbolic Computation. AISC 2014. Lecture Notes in Computer Science(), vol 8884. Springer, Cham. https://doi.org/10.1007/978-3-319-13770-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13770-4_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13769-8

  • Online ISBN: 978-3-319-13770-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics