Skip to main content

Lipolytic Extremozymes from Psychro- and (Hyper-)Thermophilic Prokaryotes and Their Potential for Industrial Applications

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Abstract

Lipolytic enzymes include esterases and lipases that are capable of hydrolyzing and synthesizing ester linkages in triglycerides. These ubiquitous biocatalysts are found in all domains of life. However, the focus of this chapter exclusively covers lipolytic extremozymes from psychro- and (hyper-)thermophiles, while enzymes from mesophilic prokaryotes are not considered. Lipases and esterases from extremophiles display optimal catalytic activity from the freezing point of water up to 100 °C. Due to their tolerance against harsh conditions and their ability to hydrolyze a broad range of natural and non-natural esters, they are considered to be applicable in versatile industry fields. Transesterification reactions of lipases and esterases play an important role in the food industry, whereas the release of free fatty acids is relevant e. g. in the laundry industry aiming at developing cost-efficient and energy-saving washing processes. In addition, lipolytic hydrolases display enantio- and regioselectivity making them highly applicable in the industrial production of pharmaceuticals and other pure compounds. We will review recent developments in the screening and recombinant production of lipolytic extremozymes, and highlight some of the industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou AM (2003) Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J Dairy Sci 86:127–132

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Kamal MZ, Sankaranarayanan R, Rao NM (2008) Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. J Mol Biol 381:324–340

    Article  CAS  PubMed  Google Scholar 

  • Al Khudary R, Venkatachalam R, Katzer M, Elleuche S, Antranikian G (2010) A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization. Extremophiles 14:273–285

    Article  CAS  PubMed  Google Scholar 

  • Alquati C, De Gioia L, Santarossa G, Alberghina L, Fantucci P, Lotti M (2002) The cold-active lipase of Pseudomonas fragi. Heterologous expression, biochemical characterization and molecular modeling. Eur J Biochem 269:3321–3328

    Article  CAS  PubMed  Google Scholar 

  • Alqueres SM, Branco RV, Freire DM, Alves TL, Martins OB, Almeida RV (2011) Characterization of the recombinant thermostable lipase (Pf2001) from Pyrococcus furiosus: effects of thioredoxin fusion tag and triton X-100. Enzyme Res 2011:316939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aoyama S, Yoshida N, Inouye S (1988) Cloning, sequencing and expression of the lipase gene from Pseudomonas fragi IFO-12049 in E. coli. FEBS Lett 242:36–40

    Article  CAS  PubMed  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ay F, Karaoglu H, Inan K, Canakci S, Belduz AO (2011) Cloning, purification and characterization of a thermostable carboxylesterase from Anoxybacillus sp. PDF1. Protein Expr Purif 80:74–79

    Article  CAS  PubMed  Google Scholar 

  • Bassegoda A, Cesarini S, Diaz P (2012a) Lipase improvement: goals and strategies. Comput Struct Biotechnol J 2, e201209005

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassegoda A, Pastor FI, Diaz P (2012b) Rhodococcus sp. strain CR-53 LipR, the first member of a new bacterial lipase family (family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan. Appl Environ Microbiol 78:1724–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer S, Kunert A, Ballschmiter M, Greiner-Stoeffele T (2010) Indication for a new lipolytic enzyme family: isolation and characterization of two esterases from a metagenomic library. J Mol Microbiol Biotechnol 18:181–187

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  CAS  PubMed  Google Scholar 

  • Brault G, Shareck F, Hurtubise Y, Lepine F, Doucet N (2012) Isolation and characterization of EstC, a new cold-active esterase from Streptomyces coelicolor A3(2). PLoS ONE 7, e32041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Xie Y, Song BK, Wang Y, Zhang Z, Feng Y (2011) Fervidobacterium changbaicum Lip1: identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V. Appl Microbiol Biotechnol 89:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Chen CK, Lee GC, Ko TP, Guo RT, Huang LM, Liu HJ, Ho YF, Shaw JF, Wang AH (2009) Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding. J Mol Biol 390:672–685

    Article  CAS  PubMed  Google Scholar 

  • Choi GS, Kim JY, Kim JH, Ryu YW, Kim GJ (2003) Construction and characterization of a recombinant esterase with high activity and enantioselectivity to (S)-ketoprofen ethyl ester. Protein Expr Purif 29:85–93

    Article  CAS  PubMed  Google Scholar 

  • Choi WC, Kim MH, Ro HS, Ryu SR, Oh TK, Lee JK (2005) Zinc in lipase L1 from Geobacillus stearothermophilus L1 and structural implications on thermal stability. FEBS Lett 579:3461–3466

    Article  CAS  PubMed  Google Scholar 

  • Choi JE, Kwon MA, Na HY, Hahm DH, Song JK (2013) Isolation and characterization of a metagenome-derived thermoalkaliphilic esterase with high stability over a broad pH range. Extremophiles 17:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N (1998) A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64:486–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chow J, Kovacic F, Dall Antonia Y, Krauss U, Fersini F, Schmeisser C, Lauinger B, Bongen P, Pietruszka J, Schmidt M, Menyes I, Bornscheuer UT, Eckstein M, Thum O, Liese A, Mueller-Dieckmann J, Jaeger KE, Streit WR (2012) The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases. PLoS ONE 7, e47665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto GH, Glogauer A, Faoro H, Chubatsu LS, Souza EM, Pedrosa FO (2010) Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast. Genet Mol Res 9:514–523

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Wang Y, Pham BP, Ping F, Pan H, Cheong GW, Zhang S, Jia B (2012) High level expression and characterization of a thermostable lysophospholipase from Thermococcus kodakarensis KOD1. Extremophiles 16:619–625

    Article  CAS  PubMed  Google Scholar 

  • de O. Carvalho P, Contesini FJ, Bizaco R, Calafatti SA, Macedo GA (2006) Optimization of enantioselective resolution of racemic ibuprofen by native lipase from Aspergillus niger. J Ind Microbiol Biotechnol 33:713–718

    Article  PubMed  CAS  Google Scholar 

  • De Santi C, Tedesco P, Ambrosino L, Altermark B, Willassen NP, de Pascale D (2014) A new alkaliphilic cold-active esterase from the psychrophilic marine bacterium Rhodococcus sp.: functional and structural studies and biotechnological potential. Appl Biochem Biotechnol 172:3054–3068

    Article  PubMed  CAS  Google Scholar 

  • Dhake KP, Thakare DD, Bhanage BM (2013) Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Falvour Fragr J 28:71–83

    Article  CAS  Google Scholar 

  • Dlugolecka A, Cieslinski H, Bruzdziak P, Gottfried K, Turkiewicz M, Kur J (2009) Purification and biochemical characteristic of a cold-active recombinant esterase from Pseudoalteromonas sp. 643A under denaturing conditions. Pol J Microbiol 58:211–218

    CAS  PubMed  Google Scholar 

  • Do H, Lee JH, Kwon MH, Song HE, An JY, Eom SH, Lee SG, Kim HJ (2013) Purification, characterization and preliminary X-ray diffraction analysis of a cold-active lipase (CpsLip) from the psychrophilic bacterium Colwellia psychrerythraea 34H. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • du Plessis EM, Berger E, Stark T, Louw ME, Visser D (2010) Characterization of a novel thermostable esterase from Thermus scotoductus SA-01: evidence of a new family of lipolytic esterases. Curr Microbiol 60:248–253

    Article  CAS  PubMed  Google Scholar 

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8:649–655

    Article  CAS  PubMed  Google Scholar 

  • Elend C, Schmeisser C, Hoebenreich H, Steele HL, Streit WR (2007) Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters. J Biotechnol 130:370–377

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S (2015) Bringing functions together with fusion enzymes-from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol 99:1545–1556

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Piascheck H, Antranikian G (2011) Fusion of the OsmC domain from esterase EstO confers thermolability to the cold-active xylanase Xyn8 from Pseudoalteromonas arctica. Extremophiles 15:311–317

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Thiry M, Arpigny JL, Gerday C (1991) Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene 102:111–115

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202

    Article  CAS  Google Scholar 

  • Fuciños P, Pastrana L, Sanroman A, Longo MA, Hermoso JA, Rua ML (2011) An esterase from Thermus thermophilus HB27 with hyper-thermoalkalophilic properties: purification, characterisation and structural modelling. J Mol Catal B Enzym 70:127–137

    Article  CAS  Google Scholar 

  • Fuciños P, Atanes E, Lopez-lopez O, Solaroli M, Cerdan ME, Gonzalez-Siso MI, Pastrana L, Rua ML (2014) Cloning, expression, purification and characterization of an oligomeric His-tagged thermophilic esterase from Thermus thermophilus HB27. Process Biochem 49:927–935

    Article  CAS  Google Scholar 

  • Gao R, Feng Y, Ishikawa K, Ishida H, Ando S, Kosugi Y, Cao S (2003) Cloning, purification and properties of a hyperthermophilic esterase from archaeon Aeropyrum pernix K1. J Mol Catal B Enzym 24–25:1–8

    Article  CAS  Google Scholar 

  • Gatti-Lafranconi P, Caldarazzo SM, Villa A, Alberghina L, Lotti M (2008) Unscrambling thermal stability and temperature adaptation in evolved variants of a cold-active lipase. FEBS Lett 582:2313–2318

    Article  CAS  PubMed  Google Scholar 

  • Golyshina OV, Golyshin PN, Timmis KN, Ferrer M (2006) The ‘pH optimum anomaly’ of intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol 8:416–425

    Article  CAS  PubMed  Google Scholar 

  • Gumerov VM, Mardanov AV, Kolosov PM, Ravin NV (2012) Isolation and functional characterization of lipase from the thermophilic alkali-tolerant bacterium Thermosyntropha lipolytica. Prikl Biokhim Mikrobiol 48:376–382

    CAS  PubMed  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  CAS  PubMed  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2005) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  • Henne A, Schmitz RA, Bomeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess M, Katzer M, Antranikian G (2008) Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12:351–364

    Article  CAS  PubMed  Google Scholar 

  • Hoesl MG, Acevedo-Rocha CG, Nehring S, Royter M, Wolschner C, Wiltschi B, Budisa N, Antranikian G (2011) Lipase congeners designed by genetic code engineering. Chemcatchem 3:213–221

    Article  CAS  Google Scholar 

  • Hotta Y, Ezaki S, Atomi H, Imanaka T (2002) Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl Environ Microbiol 68:3925–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu XP, Heath C, Taylor MP, Tuffin M, Cowan D (2012) A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil. Extremophiles 16:79–86

    Article  CAS  PubMed  Google Scholar 

  • Hwang HT, Qi F, Yuan C, Zhao X, Ramkrishna D, Liu D, Varma A (2014) Lipase-catalyzed process for biodiesel production: protein engineering and lipase production. Biotechnol Bioeng 111:639–653

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Clark DS (1998) Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng 57:624–629

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  PubMed  Google Scholar 

  • Jeon JH, Kim JT, Kim YJ, Kim HK, Lee HS, Kang SG, Kim SJ, Lee JH (2009) Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol 81:865–874

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Satyanarayana T (2015) In vitro engineering of microbial enzymes with multifarious applications: prospects and perspectives. Bioresour Technol 176:273–283

    Article  CAS  PubMed  Google Scholar 

  • Kamal MZ, Mohammad TA, Krishnamoorthy G, Rao NM (2012) Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant. PLoS One 7, e35188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamijo T, Saito A, Ema S, Yoh I, Hayashi H, Nagata R, Nagata Y, Ando A (2011) Molecular and enzymatic characterization of a subfamily I.4 lipase from an edible oil-degrader Bacillus sp. HH-01. Antonie Van Leeuwenhoek 99:179–187

    Article  CAS  PubMed  Google Scholar 

  • Kawata T, Ogino H (2009) Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution. Biotechnol Prog 25:1605–1611

    CAS  PubMed  Google Scholar 

  • Killens-Cade R, Turner R, MacInnes C, Grunden A (2014) Characterization of a thermostable, recombinant carboxylesterase from the hyperthermophilic archaeon Metallosphaera sedula DSM5348. Adv Enzym Res 2:1–13

    Article  CAS  Google Scholar 

  • Kim SB, Lee W, Ryu YW (2008) Cloning and characterization of thermostable esterase from Archaeoglobus fulgidus. J Microbiol 46:100–107

    Article  CAS  PubMed  Google Scholar 

  • Koops BC, Papadimou E, Verheij HM, Slotboom AJ, Egmond MR (1999) Activity and stability of chemically modified Candida antarctica lipase B adsorbed on solid supports. Appl Microbiol Biotechnol 52:791–796

    Article  CAS  PubMed  Google Scholar 

  • Lee D-W, Kim H-W, Lee K-W, Kim B-C, Choe E-A, Lee H-S, Kim D-S, Pyun Y-R (2001) Purification and characterization of two distinct thermostable lipases from the gram-positive thermophilic bacterium Bacillus thermoleovorans ID-1. Enzyme Microb Technol 29:363–371

    Article  CAS  Google Scholar 

  • Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A (2013) ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res 41:D423–D429

    Article  CAS  PubMed  Google Scholar 

  • Leow TC, Rahman RN, Basri M, Salleh AB (2007) A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles 11:527–535

    Article  CAS  PubMed  Google Scholar 

  • Levisson M, van der Oost J, Kengen SW (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol (Praha) 59:455–463

    Article  CAS  Google Scholar 

  • Lopez G, Chow J, Bongen P, Lauinger B, Pietruszka J, Streit WR, Baena S (2014) A novel thermoalkalostable esterase from Acidicaldus sp. strain USBA-GBX-499 with enantioselectivity isolated from an acidic hot springs of Colombian Andes. Appl Microbiol Biotechnol 98:8603–8616

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Zheng Y, Jiang Z, Ma Y, Wei D (2006) A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl Microbiol Biotechnol 73:349–355

    Article  CAS  PubMed  Google Scholar 

  • Marquardt T, von der Heyde A, Elleuche S (2014) Design and establishment of a vector system that enables production of multifusion proteins and easy purification by a two-step affinity chromatography approach. J Microbiol Methods 105:47–50

    Article  CAS  PubMed  Google Scholar 

  • Merkel L, Schauer M, Antranikian G, Budisa N (2010) Parallel incorporation of different fluorinated amino acids: on the way to “teflon” proteins. Chembiochem 11:1505–1507

    Article  CAS  PubMed  Google Scholar 

  • Morana A, Di Prizito N, Aurilia V, Rossi M, Cannio R (2002) A carboxylesterase from the hyperthermophilic archaeon Sulfolobus solfataricus: cloning of the gene, characterization of the protein. Gene 283:107–115

    Article  CAS  PubMed  Google Scholar 

  • Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol 11:88–95

    Article  CAS  PubMed  Google Scholar 

  • Nacke H, Will C, Herzog S, Nowka B, Engelhaupt M, Daniel R (2011) Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiol Ecol 78:188–201

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Katou Y, Akagi R, Mimitsuka T, Hiroshima S, Gemba Y, Doukyu N, Yasuda M, Ishimi K, Ishikawa H (2007) Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles 11:809–817

    Article  CAS  PubMed  Google Scholar 

  • Park YJ, Choi SY, Lee HB (2006) A carboxylesterase from the thermoacidophilic archaeon Sulfolobus solfataricus P1; purification, characterization, and expression. Biochim Biophys Acta 1760:820–828

    Article  CAS  PubMed  Google Scholar 

  • Parra LP, Espina G, Devia J, Salazar O, Andrews B, Asenjo JA (2015) Identification of lipase encoding genes from Antarctic seawater bacteria using degenerate primers: expression of a cold-active lipase with high specific activity. Enzyme Microb Technol 68:56–61

    Article  CAS  PubMed  Google Scholar 

  • Patkar S, Vind J, Kelstrup E, Christensen MW, Svendsen A, Borch K, Kirk O (1998) Effect of mutations in Candida antarctica B lipase. Chem Phys Lipids 93:95–101

    Article  CAS  PubMed  Google Scholar 

  • Rao L, Xue Y, Zhou C, Tao J, Li G, Lu JR, Ma Y (2011) A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes. Biochim Biophys Acta 1814:1695–1702

    Article  CAS  PubMed  Google Scholar 

  • Rashid N, Shimada Y, Ezaki S, Atomi H, Imanaka T (2001) Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 67:4064–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh C, Villatte F (2008) Isolation of a low-temperature adapted lipolytic enzyme from uncultivated microorganism. J Appl Microbiol 105:116–123

    Article  CAS  PubMed  Google Scholar 

  • Royter M, Schmidt M, Elend C, Hobenreich H, Schafer T, Bornscheuer UT, Antranikian G (2009) Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles 13:769–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusnak M, Nieveler J, Schmid RD, Petri R (2005) The putative lipase, AF1763, from Archaeoglobus fulgidusis is a carboxylesterase with a very high pH optimum. Biotechnol Lett 27:743–748

    Article  CAS  PubMed  Google Scholar 

  • Ryu HS, Kim HK, Choi WC, Kim MH, Park SY, Han NS, Oh TK, Lee JK (2006) New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl Microbiol Biotechnol 70:321–326

    Article  CAS  PubMed  Google Scholar 

  • Salameh MA, Wiegel J (2007) Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl Environ Microbiol 73:7725–7731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao H, Xu L, Yan Y (2013) Isolation and characterization of a thermostable esterase from a metagenomic library. J Ind Microbiol Biotechnol 40:1211–1222

    Article  CAS  PubMed  Google Scholar 

  • Shao H, Xu L, Yan Y (2014) Biochemical characterization of a carboxylesterase from the archaeon Pyrobaculum sp. 1860 and a rational explanation of its substrate specificity and thermostability. Int J Mol Sci 15:16885–16910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma R, Sona SK, Vohra RM, Gupta LK, Gupta JK (2002) Purification and characterisation of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochem 37:1075–1084

    Article  CAS  Google Scholar 

  • Sharma PK, Kumar R, Garg P, Kaur J (2014) Insights into controlling role of substitution mutation, E315G on thermostability of a lipase cloned from metagenome of hot spring soil. 3 Biotech 4:189–196

    Article  Google Scholar 

  • Shaw E, McCue LA, Lawrence CE, Dordick JS (2002) Identification of a novel class in the alpha/beta hydrolase fold superfamily: the N-myc differentiation-related proteins. Proteins 47:163–168

    Article  CAS  PubMed  Google Scholar 

  • Siew N, Saini HK, Fischer D (2005) A putative novel alpha/beta hydrolase ORFan family in Bacillus. FEBS Lett 579:3175–3182

    Article  CAS  PubMed  Google Scholar 

  • Soliman NA, Knoll M, Abdel-Fattah YR, Schmid RD, Lange S (2007) Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem 42:1090–1100

    Article  CAS  Google Scholar 

  • Tan S, Owusu Apenten RK, Knapp J (1996) Low temperature organic phase biocatalysis using cold-adapted lipase from psychrotrophic Pseudomonas P38. Food Chem 57:415–418

    Article  CAS  Google Scholar 

  • Tanaka D, Yoneda S, Yamashiro Y, Sakatoku A, Kayashima T, Yamakawa K, Nakamura S (2012) Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl Biochem Biotechnol 168:327–338

    Article  CAS  PubMed  Google Scholar 

  • Tao W, Shengxue F, Duobin M, Xuan Y, Congcong D, Xihua W (2013) Characterization of a new thermophilic and acid tolerant esterase from Thermotoga maritima capable of hydrolytic resolution of racemic ketoprofen ethyl ester. J Mol Catal B Enzym 85–86:23–30

    Article  CAS  Google Scholar 

  • Tchigvintsev A, Tran H, Popovic A, Kovacic F, Brown G, Flick R, Hajighasemi M, Egorova O, Somody JC, Tchigvintsev D, Khusnutdinova A, Chernikova TN, Golyshina OV, Yakimov MM, Savchenko A, Golyshin PN, Jaeger KE, Yakunin AF (2015) The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes. Appl Microbiol Biotechnol 99:2165–2178

    Article  CAS  PubMed  Google Scholar 

  • Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahab RA, Basri M, Rahman RNZRA, Salleh AB, Rahman MBA, Chaibakhsh N, Leow TC (2014) Enzymatic production of a solvent-free menthyl butyrate via response surface methodology catalyzed by a novel thermostable lipase from Geobacillus zalihae. Biotechnol Biotechnol Equip 28:1065–1072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wi AR, Jeon SJ, Kim S, Park HJ, Kim D, Han SJ, Yim JH, Kim HW (2014) Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus. Biotechnol Lett 36:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Wicka M, Krajewska E, Pawlak A (2013) Cold-adapted bacterial lipolytic enzymes and their applications. PhD Interdisp J 2:107–112

    Google Scholar 

  • Wu G, Wu G, Zhan T, Shao Z, Liu Z (2013) Characterization of a cold-adapted and salt-tolerant esterase from a psychrotrophic bacterium Psychrobacter pacificensis. Extremophiles 17:809–819

    Article  CAS  PubMed  Google Scholar 

  • Yamashiro Y, Sakatoku A, Tanaka D, Nakamura S (2013) A cold-adapted and organic solvent-tolerant lipase from a psychrotrophic bacterium Pseudomonas sp. strain YY31: identification, cloning, and characterization. Appl Biochem Biotechnol 171:989–1000

    Article  CAS  PubMed  Google Scholar 

  • Zhang JW, Zeng RY (2008) Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. Mar Biotechnol 10:612–621

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lin S, Zeng R (2007) Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp 7195. J Microbiol Biotechnol 17:604–610

    PubMed  Google Scholar 

  • Zhang XY, Fan X, Qiu YJ, Li CY, Xing S, Zheng YT, Xu JH (2014) Newly identified thermostable esterase from Sulfobacillus acidophilus: properties and performance in phthalate ester degradation. Appl Environ Microbiol 80:6870–6878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y, Li H, Ni H, Xiao A, Li L, Cai H (2015) Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9. World J Microbiol Biotechnol 31:295–306

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Skander Elleuche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elleuche, S., Schröder, C., Antranikian, G. (2016). Lipolytic Extremozymes from Psychro- and (Hyper-)Thermophilic Prokaryotes and Their Potential for Industrial Applications. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_12

Download citation

Publish with us

Policies and ethics