Skip to main content

Phytoremediation of Agricultural Soils: Using Plants to Clean Metal-Contaminated Arable Land

  • Chapter
  • First Online:
Phytoremediation

Abstract

Heavy metals pose a significant threat to arable land around the world. We describe the dangers of heavy metal contamination in agricultural settings and discuss methods of assessing the risk of metal contamination in agricultural soils and crop plants. We propose remediation options such as phytoextraction and the use of soil amendments as well as non-remediation options such as growing fuel and fiber crops or food crops that exclude metal from edible tissue. We conclude by discussing the potential for genetic modification to reduce metal uptake in food crops and highlighting directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adefemi OS, Ibigbami OA, Awokunmi EE (2012) Level of heavy metals in some edible plants collected from selected dumpsites in Ekiti State, Nigeria. Global Adv Res J Environ Sci Toxicol 1:132–136, http://garj.org/garjest/pdf/2012/august/Adefemi%20et%20al.pdf. Accessed 23 Sept 2013

    Google Scholar 

  • Anderson B, de Peyster A, Gad SC et al (eds) (2005) Encyclopedia of toxicology, 2nd edn. Amsterdam, Elsevier

    Google Scholar 

  • Appenroth KJ (2010) Definition of “heavy metals” and their role in biological systems. In: Sheramati I, Varma A (eds) Soil heavy metals, vol 19, Soil biology. Springer, Berlin

    Chapter  Google Scholar 

  • Arao T, Ishikawa S, Murakami M, Abe K, Maejima Y, Makino T (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ 8:247–257. doi:10.1007/s10333-010-0205-7

    Article  Google Scholar 

  • Bánfalvi G (ed) (2011) Cellular effects of heavy metals. Springer, New York

    Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  PubMed  Google Scholar 

  • Boyd RS, Rajakaruna N (2013) Heavy metal tolerance. In: Gibson D (ed) Oxford bibliographies in ecology. Oxford University Press, New York, http://www.oxfordbibliographies.com/obo/page/ecology

    Google Scholar 

  • Brady NC, Weil RR (2007) The nature and properties of soils, 14th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Chaffai R, Koyama H (2011) Heavy metal tolerance in Arabidopsis thaliana. Adv Bot Res 60:1–49

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay B, Uptal Singha R, Mukhopadhyay SK (2010) Mobility and bioavailability of chromium in the environment: physico-chemical and microbial oxidation of Cr (III) to Cr (VI). J Appl Sci Environ Manage 14:97–101

    CAS  Google Scholar 

  • Cutright T, Gunda N, Kurt F (2010) Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Int J Phytoremediation 12:562–573

    Article  CAS  PubMed  Google Scholar 

  • Efremova M, Izosimova A (2012a) Contamination of agricultural soils with heavy metals. In: Jakobsson C (ed) Ecosystem health and agriculture. Sustainable agriculture. The Baltic University Program. Uppsala University, Uppsala, Sweden, pp 250–252

    Google Scholar 

  • Efremova M, Izosimova A (2012b) Contamination of agricultural soils with radionuclides. In: Jakobsson C (ed) Ecosystem health and agriculture. Sustainable agriculture. The Baltic University Program. Uppsala University, Uppsala, Sweden, pp 253–255

    Google Scholar 

  • Felix-Henningsen P, Urushadze T, Steffens D, Kalandadze B, Narimanidze E (2010) Uptake of heavy metals by food crops from highly-polluted Chernozem-like soils in an irrigation district south of Tbilisi, eastern Georgia. Agron Res 8:781–795

    Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5:47–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gall JE, Rajakaruna N (2013) The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In: Lang M (ed) Brassica: characterization, functional genomics and health benefits. Nova, New York, pp 121–148

    Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganism and microbial processes in agricultural soils: a review. Soil Biol Bichem 30:1389–1414. doi:10.1016/S0038-0717(97)00270-8

    Article  CAS  Google Scholar 

  • Grant CA (2011) Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Pedologist 54:143–155

    CAS  Google Scholar 

  • Guo X, Wei Z, Penn CJ, Tianfen X, Qitang W (2011) Effect of soil washing and liming on bioavailability of heavy metals in acid contaminated soil. Soil Sci Soc Am J 77:432–441

    Article  Google Scholar 

  • Gupta DK, Sandallo LM (eds) (2011) Metal toxicity in plants: perception, signaling and remediation. Springer, London

    Google Scholar 

  • Islam E, Yang X-E, He Z-L, Mahmood Q (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 8:1–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Kien CN, Noi NV, Son LT, Ngoc HM, Tanaka S, Nishina T, Iwasaki K (2010) Heavy metal contamination of agricultural soils around a chromite mine in Vietnam. Soil Sci Plant Nutr 56:344–356. doi:10.1111/j.1747-0765.2010.00451.x

    Article  CAS  Google Scholar 

  • Kozdrój J, van Elsas JD (2001) Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE finger printing and FAME profiling. Appl Soil Ecol 17:31–42. doi:10.1016/S0929-1393(00)00130-X

    Article  Google Scholar 

  • Krämer U (2010) Metal Hyperaccumulation in Plants. Annu Rev Plant Biol 61: 517–534

    Article  PubMed  Google Scholar 

  • Krzyzak J, Grazyna P, Marta P (2013) Changes in metal bioavailability in soil and their accumulation in plants during a two years’ aided phytostabilization experiment. EGU General Assembly 2013. http://adsabs.harvard.edu/abs/2013EGUGA.15.6800K. Accessed 17 Sept 2013

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM (2000) The use of plants for the removal of toxic metals from contaminated soil. http://www.plantstress.com/articles/toxicity_m/phytoremed.pdf. Accessed 19 Sept 2013

  • Leung H-M, Wang Z-W, Ye Z-H, Yung K-L, Peng X-L, Cheung K-C (2013) Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere 23:549–563

    Article  CAS  Google Scholar 

  • Li GY, Hu N, Ding DX, Zheng JF, Liu YL, Wang YD, Nie XQ (2011) Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull Environ Contam Toxicol 86:646–652

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Gou X, Wang G, Zhang Q, Su Q, Xiao G (2008) Heavy metal contamination and source in arid agricultural soil in central Gansu Province, China. J Environ Sci (China) 20:607–612

    Article  CAS  Google Scholar 

  • Lim JM, Salido AL, Butcher DJ (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76:3–9

    Article  CAS  Google Scholar 

  • Lin Y, Weng C, Lee S (2012) Spatial distribution of heavy metals in contaminated agricultural soils exemplified by Cr, Cu, and Zn. J Environ Eng 138:299–306, Special issue: advances in research and development of sustainable environmental technologies

    Article  CAS  Google Scholar 

  • Liu Y (2006) Shrinking arable lands jeopardizing China’s food security. http://www.worldwatch.org/node/3912. Accessed 17 Sept 2013

  • Lone MI, He Z-L, Stoffella PJ, Yang X-E (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220. doi:10.1631/jzus.B0710633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  • Maleki A, Zarasvand MA (2008) Heavy metals in selected edible vegetables and estimation of their daily intake in Sanandaj, Iran. SE Asian J Trop Med 39:335–340

    CAS  Google Scholar 

  • McKeehan P (2000) Brownfields: the financial, legislative and social aspects of the redevelopment of contaminated commercial and industrial properties. http://md3.csa.com/discoveryguide/brown/overview.php?SID=05c43ivvp4r0detrha3d9r5g. Accessed 17 Sept 2013

  • McLaughlin M (2002) Heavy metals. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker, New York, pp 650–653

    Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283. doi:10.1289/ehp.10608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mico C, Recatala L, Peris M, Sanchez J (2006) Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65:863–872

    Article  CAS  PubMed  Google Scholar 

  • Miranda M, Benedito JL, Blanco-Penedo I, Lopez-Lamas C, Merino A, Lopex-Alonso M (2009) Metal accumulation in cattle raised in a serpentine-soil area: relationship between metal concentrations in soil, forage, and animal tissues. J Trace Elem Med Bio 23:231–238

    Article  CAS  Google Scholar 

  • Mohtadi A, Ghaderian SM, Schat H (2011) A comparison of lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes. Plant and Soil 352:267–276

    Article  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth VM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Neilson S, Rajakaruna N (2012) Roles of rhizospheric processes and plant physiology in phytoremediation of contaminated sites using oilseed Brassicas. In: Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA (eds) The plant family Brassicaceae: contribution towards phytoremediation, environmental pollution book series, vol 21. Springer, Dordrecht, The Netherlands, pp 313–330

    Google Scholar 

  • Nica DV, Bura M, Gergen I, Harmanescu M, Bordean D-M (2012) Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain. Chem Cent J 6:55, http://journal.chemistrycentral.com/content/6/1/55. Accessed 17 Sept 2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311:205–219

    Article  CAS  PubMed  Google Scholar 

  • Patrick L (2006) Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Altern Med Rev 11:2–22

    PubMed  Google Scholar 

  • Puschenreiter M, Horak O, Friesl W, Hartl W (2005) Low-cost agricultural measures to reduce heavy metal transfer into the food chain—a review. Plant Soil Environ 51:1–11

    Article  Google Scholar 

  • Qishlaqi A, Moore F (2007) Statistical analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khosk River banks, Shiraz, Iran. American-Eurasian J Agric Environ Sci 2:565–573

    Google Scholar 

  • Rahman SH, Khanam D, Adyel TM, Islam MS, Ahsan MA, Akbor MA (2012) Assessment of heavy metal contamination of agricultural soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: implication of seasonal variation and indices. Appl Sci 2:584–601

    Article  CAS  Google Scholar 

  • Rajakaruna N, Boyd RS (2008) Edaphic factor. In: Jørgensen SE, Fath BD (eds) General ecology, vol 2 of encyclopedia of ecology. Elsevier, Oxford, pp 1201–1207

    Chapter  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal accumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Richards B, Steenhus T, Peverly J, McBride M (2000) Effect of sludge-processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading. Environ Pollut 109:327–346

    Article  CAS  PubMed  Google Scholar 

  • Rockwood DL, Naidu CV, Carter DR, Rahmani M, Spriggs TA, Lin C, Alker GR, Isebrands JG, Segrest SA (2004) Short-rotation woody crops and phytoremediation: opportunities for agroforestry? Agroforest Syst 61:51–63

    Google Scholar 

  • Rotkittikhun P, Kruatrachue M, Chaiyarat R, Ngernsansaruay C, Pokethitiyook P, Paijitprapaport A, Baker AJM (2006) Uptake and accumulation of lead by plants from Bo Ngam lead mine area in Thailand. Environ Pollut 2:681–688

    Article  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Sánchez ML (ed) (2008) Causes and effects of heavy metal pollution. Nova, New York

    Google Scholar 

  • Szczyglowska M, Piekarska A, Konieczka P, Namiesnik J (2011) Use of Brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12:7760–7771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw AJ (ed) (1990) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, FL

    Google Scholar 

  • Singh BR, Gupta SK, Azaizeh H, Shilev S, Sudre D, Song WY, Martinoia E, Mench M (2011) Safety of food crops on land contaminated with trace elements. J Sci Food Agric 91:1349–1366

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Tang Y-T, Deng T-H-B WQ-H et al (2012) Designing cropping systems for metal-contaminated sites: a review. Pedosphere 22:470–488

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2012) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:1–16

    Google Scholar 

  • Vassil AD, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117:447–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Warwick SI (2011) Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Plant genetics and genomics: crop models, vol 9. Springer, New York, pp 33–65

    Chapter  Google Scholar 

  • Wei S, Zhou Q, Wang X (2005) Identification of weed plants excluding the uptake of heavy metals. Environ Int 31:829–834

    Article  PubMed  Google Scholar 

  • Weyman-Kaczmarkowa W, Pedziwilk Z (2000) The development of fungi as affected by pH and type of soil, in relation to the occurrence of bacteria and soil fungi static activity. Microbiol Res 155:107–112

    Article  CAS  PubMed  Google Scholar 

  • Wilson-Corral V, Anderson CW, Rodriguez-Lopez M (2012) Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J Environ Manage 111:249–257

    Article  PubMed  Google Scholar 

  • Wood BW, Chaney R, Crawford B (2006) Correcting micronutrient deficiency using metal hyperaccumulators: Alyssum biomass as a natural product for nickel deficiency correction. HortScience 41:1231–1234

    CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology Volume 2011, Article ID 402647, 20 pages. doi:10.5402/2011/402647

    Google Scholar 

  • Xin J, Huang B, Yang Z, Yuan J, Dai H, Qiu Q (2010) Responses of different water spinach cultivars and their hybrid to Cd, Pb, and Cd-Pb exposures. J Hazard Mater 175:468–476

    Article  CAS  PubMed  Google Scholar 

  • Yaron B, Calvet R, Prost R (1996) Soil pollution processes and dynamics. Springer, Heidelberg

    Book  Google Scholar 

  • Zhang K, Wang J, Yang Z, Xin G, Yuan J, Xin J, Huang C (2013a) Genotype variations in accumulation of cadmium and lead in celery (Apium graveolens L.) and screening for low Cd and Pb accumulative cultivars. Front Environ Sci Eng 7:85–96

    Article  CAS  Google Scholar 

  • Zhang K, Yuan J, Kong W, Yang Z (2013b) Genotype variations in cadmium and lead accumulations in leafy lettuce (Lactuca sativa L.) and screening for pollution-safe cultivars for food safety. Environ Sci Process Impacts 15:1245–1255

    Article  PubMed  Google Scholar 

  • Zheljazkov VD, Nielsen NE (1996) Effect of heavy metals on peppermint and cornmint. Plant Soil 178:59–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Robert S. Boyd (Auburn University, AL, USA) and Mr. Tanner B. Harris (WRA Environmental Consultants, CA, USA) for their careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishanta Rajakaruna Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neilson, S., Rajakaruna, N. (2015). Phytoremediation of Agricultural Soils: Using Plants to Clean Metal-Contaminated Arable Land. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_11

Download citation

Publish with us

Policies and ethics