Skip to main content

Simulations and Analogs (Test-Beds)

  • Chapter
  • First Online:
Space Physiology and Medicine

Abstract

Space is not readily accessible for research and training and is costly. Many space environmental factors can be readily reproduced on Earth. However, prolonged microgravity and the full spectrum of radiation are difficult to replicate under Earth’s conditions. Substitute test-beds to probe hazards, address medical risks, and allow familiarization with the novel space environments offer a potential solution to access and cost constraints. All test-beds present unique hazards and health risks of which medical personnel should be cognizant. Understanding risks and familiarity with appropriate monitoring of subjects and astronaut help, together with proper interventions, will minimize health complications and improve operational safety. Familiarity of the test-beds safety ratings and institutional (ethics) review boards process will help ensure health and wellbeing in all exposure to environmental extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grenon SM, Saary J, Gray G, Vanderploeg JM, Hughes-Fulford M. Can I take a space flight? Considerations for doctors. BMJ. 2012;345, e8124.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schimmerling W. Overview of NASA's Space Radiation Research Program. Gravit Space Biol Bull. 2003;16(2):5–10.

    PubMed  Google Scholar 

  3. Bhattacharyya M, Pal MS, Sharma YK, Majumdar D. Changes in sleep patterns during prolonged stays in Antarctica. Int J Biometeorol. 2008;52(8):869–79.

    Article  PubMed  Google Scholar 

  4. Blakely EA, Chang PY. A review of ground-based heavy-ion radiobiology relevant to space radiation risk assessment. Part II: cardiovascular and immunological effects. Adv Space Res. 2007;40(4):461–9.

    Article  Google Scholar 

  5. Gazenko OG, Grigor’ev AI. Main areas and results of research at the Institute of Biomedical Problems in 1963–1998. Aviakosm Ekolog Med. 1998;32(5):4–17.

    CAS  PubMed  Google Scholar 

  6. Doarn CR, Anvari M, Low T, Broderick TJ. Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed J E Health. 2009;15(4):325–35.

    Article  PubMed  Google Scholar 

  7. Harnett BM, Doarn CR, Russell KM, Kapoor V, Merriam NR, Merrell RC. Wireless telemetry and Internet technologies for medical management: a Martian analogy. Aviat Space Environ Med. 2001;72(12):1125–31.

    CAS  PubMed  Google Scholar 

  8. Smith SM, Zwart SR, McMonigal KA, Huntoon CL. Thyroid status of Space Shuttle crewmembers: effects of iodine removal. Aviat Space Environ Med. 2011;82(1):49–51.

    Article  PubMed  Google Scholar 

  9. Sychev VN. Space experiments on the development of biological systems for the human life. Aviakosm Ekolog Med. 2013;47(1):43–6.

    CAS  PubMed  Google Scholar 

  10. Stenger M, Evans J, Knapp C, Lee S, Philips T, Perez S, Moore AJ, Paloski W, Platts S. Artificial gravity training reduces bed rest-induced cardiovascular deconditioning. Eur J Appl Physiol. 2012;112(2):605–16.

    Article  PubMed  Google Scholar 

  11. Clark BC, Pierce JR, Manini TM, Ploutz-Snyder LL. Effect of prolonged unweighting of human skeletal muscle on neuromotor force control. Eur J Appl Physiol. 2007;100(1):53–62.

    Article  PubMed  Google Scholar 

  12. Tesch PA, von Walden F, Gustafsson T, Linnehan RM, Trappe TA. Skeletal muscle proteolysis in response to short-term unloading in humans. J Appl Physiol (1985). 2008;105(3):902–6.

    Article  PubMed Central  Google Scholar 

  13. Brooks N, Cloutier GJ, Cadena SM, Layne JE, Nelsen CA, Freed AM, Roubenoff R, Castaneda-Sceppa C. Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit. J Appl Physiol. 2008;105(1):241–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fortney SM, Schneider VS, Greenleaf JE. The physiology of bed rest. Compr Physiol. 2011;2011:889–939.

    Google Scholar 

  15. Law J, Mathers CH, Fondy SR, Vanderploeg JM, Kertsman EL. NASA’s human system risk management approach and its applicability to commercial spaceflight. Aviat Space Environ Med. 2013;84(1):68–73.

    Article  PubMed  Google Scholar 

  16. Jost PD. Simulating human space physiology with bed rest. Hippokratia. 2008;12 Suppl 1:37–40.

    PubMed  PubMed Central  Google Scholar 

  17. Arzeno NM, Stenger MB, Lee SM, Ploutz-Snyder R, Platts SH. Sex differences in blood pressure control during 6° head-down tilt bed rest. Am J Physiol Heart Circ Physiol. 2013;304(8):H1114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baevsky RM, Baranov VM, Funtova II, Diedrich A, Pashenko AV, et al. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J Appl Physiol. 2007;103(1):156–61.

    Article  PubMed  Google Scholar 

  19. Grenon SM, Xiao X, Hurwitz S, Sheynberg N, Kim C, Seely EW, Cohen RJ, Williams GH. Why is orthostatic tolerance lower in women than in men? Renal and cardiovascular responses to simulated microgravity and the role of midodrine. J Investig Med. 2006;54(4):180–90.

    Article  CAS  PubMed  Google Scholar 

  20. Martin DS, Meck JV. Presyncopal/non-presyncopal outcomes of post spaceflight stand tests are consistent from flight to flight. Aviat Space Environ Med. 2004;75(1):65–7.

    PubMed  Google Scholar 

  21. Harm DL, Jennings RT, Meck JV, Powell MR, Putch L, Sams CP, et al. Invited review: gender issues related to spaceflight: a NASA perspective. J Appl Physiol. 2001;91(5):2374–83.

    CAS  PubMed  Google Scholar 

  22. Frings-Meuthen P, Boehme G, Liphardt AM, Baeker N, Heer M, Rittweger J, et al. Sclerostin and DKK1 levels during 14 and 21 days of bed rest in healthy young men. J Musculoskelet Neuronal Interact. 2013;13(1):45–52.

    CAS  PubMed  Google Scholar 

  23. Belavy D, Armbrecht G, Richardson C, Felsenberg D, Hides J. Muscle atrophy and changes in spinal morphology: is the lumbar spine vulnerable after prolonged bed-rest? Spine. 2011;36(2):137–45.

    Article  PubMed  Google Scholar 

  24. Gopalakrishnan R, Genc KO, Rice AJ, Lee SM, Evans HJ, Maender CC, et al. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviat Space Environ Med. 2010;81(2):91–102.

    Article  PubMed  Google Scholar 

  25. Rittweger J, Felsenberg D. Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up. Bone. 2009;44(2):214–24.

    Article  CAS  PubMed  Google Scholar 

  26. de Boer MD, Seynnes OR, di Prampero PE, Pisot R, Mekjavic IB, Biolo G, Narici MV. Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. Eur J Appl Physiol. 2008;104(2):401–7.

    Article  PubMed  Google Scholar 

  27. Ohshima H, Mukai C. Bone metabolism in human space flight and bed rest study. Clin Calcium. 2008;18(9):1245–53. In Japanese.

    PubMed  Google Scholar 

  28. Lang TF, Leblanc AD, Evans HJ, Lu Y. Adaptation of the proximal femur to skeletal reloading after long‐duration spaceflight. J Bone Miner Res. 2006;21(8):1224–30.

    Article  PubMed  Google Scholar 

  29. Diedrich A, Paranjape SY, Robertson D. Plasma and blood volume in space. Am J Med Sci. 2007;334(1):80–5.

    Article  PubMed  Google Scholar 

  30. Payne MW, Uhthoff HK, Trudel G. Anemia of immobility: caused by adipocyte accumulation in bone marrow. Med Hypotheses. 2007;69(4):778–86.

    Article  CAS  PubMed  Google Scholar 

  31. De Santo NG, Cirillo M, Kirsch KA, Correale G, Drummer C, Frassl W, et al. Anemia and erythropoietin in space flights. Semin Nephrol. 2005;25(6):379–87.

    Article  PubMed  CAS  Google Scholar 

  32. Rice L, Alfrey CP. The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem. 2005;15(6):245–50.

    Article  CAS  PubMed  Google Scholar 

  33. Smith SM. Red blood cell and iron metabolism during space flight. Nutrition. 2002;18(10):864–6.

    Article  CAS  PubMed  Google Scholar 

  34. Alfrey CP, Rice L, Udden MM, Driscoll TB. Neocytolysis: physiological down-regulator of red-cell mass. Lancet. 1997;349(9062):1389–90.

    Article  CAS  PubMed  Google Scholar 

  35. Dunn CD, Lange RD, Kimzey SL, Johnson PC, Leach CS. Serum erythropoietin titers during prolonged bedrest; relevance to the “anaemia” of space flight. Eur J Appl Physiol Occup Physiol. 1984;52(2):178–82.

    Article  CAS  PubMed  Google Scholar 

  36. Smith SM, Heer M, Wang Z, Huntoon CL, Zwart SR. Long-duration space flight and bed rest effects on testosterone and other steroids. J Clin Endocrinol Metab. 2012;97(1):270–8.

    Article  CAS  PubMed  Google Scholar 

  37. Hughson RL, Shoemaker JK, Blaber AP, Arbeille P, Greaves DK, Pereira-Junior PP, et al. Cardiovascular regulation during long-duration spaceflights to the International Space Station. J Appl Physiol (1985). 2012;12(5):719–27.

    Article  Google Scholar 

  38. Bergouignan A, Rudwill F, Simon C, Blanc S. Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol. 2011;111(4):1201–10.

    Article  CAS  PubMed  Google Scholar 

  39. Cree MG, Paddon-Jones D, Newcomer BR, Ronsen O, Aarsland A, Wolfe RR, Ferrando A. Twenty-eight-day bed rest with hypercortisolemia induces peripheral insulin resistance and increases intramuscular triglycerides. Metabolism. 2010;59(5):703–10.

    Article  CAS  PubMed  Google Scholar 

  40. Heer M, Paloski WH. Space motion sickness: incidence, etiology, and countermeasures. Auton Neurosci. 2006;129(1):77–9.

    Article  PubMed  Google Scholar 

  41. Roberts JE, Kukielczak BM, Chignell CF, Sik BH, Hu DN, Principato MA. Simulated microgravity induced damage in human retinal pigment epithelial cells. Mol Vis. 2006;12(70):633–8.

    CAS  PubMed  Google Scholar 

  42. Biolo G, Heer M, Narici M, Strollo F. Microgravity as a model of ageing. Curr Opin Clin Nutr Metab Care. 2003;6(1):31–40.

    Article  PubMed  Google Scholar 

  43. Gokce N, Ruderman NB, Keaney JF, Vita JA. Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler Thromb Vasc Biol. 2007;27(12):2650–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Oman CM. Sensory conflict theory and space sickness: our changing perspective. J Vestib Res. 1998;8(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  45. Ackermann M, van den Bogert AJ. Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy. J Biomech. 2012;45(7):1293–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dyckman DJ, Sauder CL, Ray CA. Effects of short-term and prolonged bed rest on the vestibulosympathetic reflex. Am J Physiol Heart Circ Physiol. 2012;302(1):H368–74.

    Article  CAS  PubMed  Google Scholar 

  47. Reschke MF, Bloomberg JJ, Paloski WH, Mulavara AP, Feiveson AH, Harm DL. Postural reflexes, balance control, and functional mobility with long-duration head-down bed rest. Aviat Space Environ Med. 2009;80((5, Section II Suppl)):A45–54.

    Article  PubMed  Google Scholar 

  48. Layne CS, Mulavara AP, McDonald PV, Pruett CJ, Kozlovskaya IB, Bloomberg JJ. Alterations in human neuomuscular acivation during overground locmotion after long-duration spaceflight. J Gravit Physiol. 2004;11(3):1–16.

    Google Scholar 

  49. Millet C, Custaud M, Maillet A, Allevard A, Duvareille M, Gauguelin-Koch G, et al. Endocrine responses to 7 days of head-down bed rest and orthostatic tests in men and women. Clin Physiol. 2001;21(2):172–83.

    Article  CAS  PubMed  Google Scholar 

  50. Chiquet C, Custaud MA, Pavy Le Traon A, Millet C, Gharib C, Denis P. Changes in intraocular pressure during prolonged (7-day) head-down tilt bedrest. J Glaucoma. 2003;12:204–8.

    Article  PubMed  Google Scholar 

  51. Linder BJ, Trick GL. Simulation of spaceflight with whole-body head-down tilt: influence on intraocular pressure and retinocortical processing. Aviat Space Environ Med. 1987;58(9 Pt 2):A139–42.

    CAS  PubMed  Google Scholar 

  52. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.

    Article  PubMed  Google Scholar 

  53. Taibbi G, Kaplowitz K, Cromwell RL, Godley BF, Zanello SB, Vizzeri G. Effects of 30-day head-down bed rest on ocular structures and visual function in a healthy subject. Aviat Space Environ Med. 2013;84(2):148–54.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Taibbi G, Cromwell RL, Kapoor KG, Godley BF, Vizzeri G. The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol. 2013;58(2):155–63.

    Article  PubMed  Google Scholar 

  55. LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1(2):157–60.

    CAS  PubMed  Google Scholar 

  56. Karemaker J, Giosolf J, Stok W, van Montfrans G. 24-hr blood pressure in HDT-bed rest and short-lasting space flight. J Gravit Physiol. 2007;14(1):49–50.

    Google Scholar 

  57. Ertl A, Diedrich A, Biaggioni I. Baroreflex dysfunction induced by microgravity: potential relevance to postflight orthostatic intolerance. Clin Auton Res. 2000;10(5):269–77.

    Article  CAS  PubMed  Google Scholar 

  58. NASA Analog Missions Overview, NASA Website. https://www.nasa.gov/analogs/types-of-analogs. Accessed 21 Sept 2016.

  59. Trappe S, Costill D, Gallagher P, Creer A, Peters JR, Evans H, Riley DA, Fitts RH. Exercise in space: human skeletal muscle after 6 months aboard the International Space Station. J Appl Physiol (1985). 2009;106(4):1159–68.

    Article  Google Scholar 

  60. Williams W, Schneider S, Gretebeck R, Lane H, Stuart C, Whitson P. Effect of dietary sodium on fluid/electrolyte regulation during bed rest. Aviat Space Environ Med. 2003;74(1):37–46.

    CAS  PubMed  Google Scholar 

  61. Inniss AM, Rice BL, Smith SM. Dietary support of long-duration head-down bed rest. Aviat Space Environ Med. 2009;80(5, Section II Suppl):A9–14.

    Article  PubMed  Google Scholar 

  62. Schmitt DA, Schwarzenberg M, Tkaczuk J, Hebrard S, Brandenberger G, Mauco G, Cogoli-Greuter M, Abbal M. Head-down tilt bed rest and immune responses. Pflugers Arch. 2000;441(2-3 Suppl):R79–84.

    Article  CAS  PubMed  Google Scholar 

  63. Trappe S, Creer A, Minchev K, Slivka D, Louis E, Luden N, Trappe T. Human soleus single muscle fiber function with exercise or nutrition countermeasures during 60 days of bed rest. Am J Physiol Regul Integr Comp Physiol. 2008;294(3):R939–47.

    Article  CAS  PubMed  Google Scholar 

  64. Kouzaki M, Masani K, Akima H, Shirasawa H, Fukuoka H, Kanehisa H, Fukunaga T. Effects of 20-day bed rest with and without strength training on postural sway during quiet standing. Acta Physiol. 2007;189(3):279–92.

    Article  CAS  Google Scholar 

  65. Kakurin LI, Lobachik VI, Mikhailov VM, Senkevich YA. Antiorthostatic hypokinesis as a method of weightlessness simulation. Aviat Space Environ Med. 1976;47(10):1083–6.

    CAS  PubMed  Google Scholar 

  66. Joint US/USSR hypokinesia program. Washington, DC: NASA; 1979. Contract no.: TM-76013. http://www.archive.org/details/nasa_techdoc_19900019649. Accessed 18 Oct 2013.

  67. Nishimura N, Beck L, Gauger P, Iwase S, Sugenoya J. Effect of change in intrathoracic pressure on thermoregulatory responses during -6 degree head-down bed rest. J Gravit Physiol. 2007;14(1):105–6.

    Google Scholar 

  68. Salanova M, Schiffl G, Puttmann B, Schoser BG, Blottner D. Molecular biomarkers monitoring human skeletal muscle fibres and microvasculature following long-term bed rest with and without countermeasures. J Anat. 2008;212(3):306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kanikowska D, Sato M, Iwase S, Shimizu Y, Inukai Y, Nishimura N, Sugenoya JASAEMVIP-PD. Immune and neuroendocrine responses to head-down rest and countermeasures. Aviat Space Environ Med. 2008;79(12):1091–5.

    Article  CAS  PubMed  Google Scholar 

  70. Smith SR, Lovejoy JC, Bray GA, Rood J, Most MM, Ryan DH. Triiodothyronine increases calcium loss in a bed rest antigravity model for space flight. Metabolism. 2008;57(12):1696–703.

    Article  CAS  PubMed  Google Scholar 

  71. Mitchell BM, Meck JV. Short-duration spaceflight does not prolong QTc intervals in male astronauts. Am J Cardiol. 2004;93(8):1051–2.

    Article  PubMed  Google Scholar 

  72. Sakowski C, Starc V, Smith SM, Schlegel TT. Sedentary long-duration head-down bed rest and ECG repolarization heterogeneity. Aviat Space Environ Med. 2011;82(4):418–23.

    Article  Google Scholar 

  73. Crucian BE, Stowe RP, Mehta SK, Yetman DL, Leal MJ, Quiriarte HD, Pierson DL, Sams CF. Immune status, latent viral reactivation, and stress during long-duration head-down bed rest. Aviat Space Environ Med. 2009;80(5, Section II Suppl):A37–44.

    Article  PubMed  Google Scholar 

  74. Meck JV, Dreyer SA, Warren LE. Long-duration head-down bed rest: project overview, vital signs, and fluid balance. Aviat Space Environ Med. 2009;80(5, Section II Suppl):A1–8.

    Article  PubMed  Google Scholar 

  75. Zwart SR, Kala G, Smith SM. Body iron stores and oxidative damage in humans increased during and after a 10-to 12-day undersea dive. J Nutr. 2009;139(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  76. Navasiolava NM, Custaud MA, Tomilovskaya ES, Larina IM, Mano T, Gauquelin-Koch G, Gharib C, Kozlovskaya IB. Long-term dry immersion: review and prospects. Eur J Appl Physiol. 2011;111(7):1235–60.

    Article  CAS  PubMed  Google Scholar 

  77. Hewes DE, Spady AA, Harris RL. Comparative measurements of man’s walking and running gaits in Earth- and simulated-lunar gravity. Washington, DC: NASA; 1966 [TM-3363 Contract.].

    Google Scholar 

  78. Nakajima T, Iida H, Kurano M, Takano H, Morita T, Meguro K, et al. Hemodynamic responses to simulated weightlessness of 24-h head-down bed rest and KAATSU blood flow restriction. Eur J Appl Physiol. 2008;104(4):727–37.

    Article  PubMed  Google Scholar 

  79. Pavy-Le Traon A, Maillet A, Vasseur Clausen P, Custaud MA, Alferova I, Gharib C, Fortrat JO. Clinical effects of thigh cuffs during a 7-day 6 degrees head-down bed rest. Acta Astronaut. 2001;49(3-10):145–51.

    Article  CAS  PubMed  Google Scholar 

  80. Ushakov IB, Orlov OI, Baevskiĭ RM, Bersenev EI, Chernikova AG. New technologies for evaluation of health status of apparently healthy people. Ross Fiziol Zh Im I M Sechenova. 2013;99(3):313–9.

    CAS  PubMed  Google Scholar 

  81. Hitchcock MA, Hitchcock FA. Paul Bert’s barometric pressure: researches in experimental physiology (translation from French). Columbus, OH: College Book Company; 1943.

    Google Scholar 

  82. Foster PP, Boriek AM, Butler BD, Gernhardt ML, Bové AA. Patent foramen ovale and paradoxical systemic embolism: a bibliographic review. Aviat Space Environ Med. 2003;74(6 pt 2):B1–64.

    PubMed  Google Scholar 

  83. Kerut EK, Norfleet WT, Plotnick GD, Giles TD. Patent foramen ovale: a review of associated conditions and the impact of physiological size. J Am Coll Cardiol. 2001;38(3):613–23.

    Article  CAS  PubMed  Google Scholar 

  84. Droppert PM. The effects of microgravity on the skeletal system – a review. J Br Interplanet Soc. 1990;43(1):19–24.

    CAS  PubMed  Google Scholar 

  85. Edgell H, Grinberg A, Gagné N, Beavers KR, Hughson RL. Cardiovascular responses to lower body negative pressure before and after 4 h of head-down bed rest and seated control in men and women. J Appl Physiol. 2012;113(10):1604–12.

    Article  CAS  PubMed  Google Scholar 

  86. Zwart SR, Hargens AR, Lee SMC, Macias BR, Watenpaugh DE, Tse K, Smith SM. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins. Bone. 2007;40(2):529–37.

    Article  PubMed  Google Scholar 

  87. Watenpaugh DE, O'Leary DD, Schneider SM, Lee SMC, Macias BR, Tanaka K, Hughson RL, Hargens AR. Lower body negative pressure exercise plus brief postexercise lower body negative pressure improve post-bed rest orthostatic tolerance. J Appl Physiol (1985). 2007;103(6):1964–72.

    Article  Google Scholar 

  88. Wolthuis RA, Bergman SA, Nicogossian AE. Physiological effects of applied reduced pressure in man. Physiol Rev. 1974;54(3):566–95.

    CAS  PubMed  Google Scholar 

  89. Johnson RL, Nicogossian AE, Bergman Jr SA, Hoffler GW. Lower body negative pressure: the second manned Skylab mission. Aviat Space Environ Med. 1976;47(4):347–53.

    CAS  PubMed  Google Scholar 

  90. Sonnenfeld G, Shearer W. Immune function during space flight. Nutrition. 2002;18(10):899–903.

    Article  CAS  PubMed  Google Scholar 

  91. Lugg DJ. Behavioral health in Antarctica: implications for long-duration space missions. Aviat Space Environ Med. 2005;76(6 Suppl):B74–7.

    PubMed  Google Scholar 

  92. Schmidt LL, Wood J, Lugg DJ. Gender differences in leader and follower perceptions of social support in Antarctica. Acta Astronaut. 2005;56(9-12):923–31.

    Article  PubMed  Google Scholar 

  93. Wharton R, Roberts B, Chiang E, Lynch J, Roberts C, Buoni C, Andersen D. Use of Antarctic analogs to support the space exploration initiative. NASA and NSF. 1990. NASA-TM-108000.

    Google Scholar 

  94. Wood J, Schmidt L, Lugg D, Ayton J, Phillips T, Shepanek M. Life, survival, and behavioral health in small closed communities: 10 years of studying isolated Antarctic groups. Aviat Space Environ Med. 2005;76(6, Sec. 2):89–93.

    Google Scholar 

  95. Rosent E, Jurion S, Cazes G, Bachelard C. Mixed-gender groups: coping strategies and factors of psychological adaptation in a polar environment. Aviat Space Environ Med. 2004;75(7 Suppl):C10–3.

    Google Scholar 

  96. Mehta SK, Pierson DL, Cooley H, Dubow R, Lugg D. Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners. J Med Virol. 2000;61(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  97. Tingate TR, Lugg DJ, Muller HK, Stowe RP, Pierson DL. Antarctic isolation: immune and viral studies. Immunol Cell Biol. 1997;75(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  98. Pitson GA, Lugg DJ, Muller HK. Seasonal cutaneous immune responses in an Antarctic wintering group: no association with testosterone, vitamin D metabolite or anxiety score. Arctic Med Res. 1996;55(3):118–22.

    CAS  PubMed  Google Scholar 

  99. Reed HL, Reedy KR, Palinkas LA, Do NV, Finney NS, Case HS, LeMar HJ, Wright J, Thomas J. Impairment in cognitive and exercise performance during prolonged Antarctic residence: effect of thyroxine supplementation in the Polar triiodothyronine syndrome. J Clin Endocrinol Metab. 2001;86(1):110–6.

    CAS  PubMed  Google Scholar 

  100. Ikegawa M, Kimura M, Makita K, Itokawa Y. Psychological studies of a Japanese winter-over group at Asuka Station, Antarctica. Aviat Space Environ Med. 1998;69(5):452–60.

    CAS  PubMed  Google Scholar 

  101. Inoue N, Tachibana S. An isolation and confinement facility for the selection of astronaut candidates. Aviat Space Environ Med. 2013;84(8):867–71.

    Article  PubMed  Google Scholar 

  102. Sarris A. Personality, culture fit, and job outcomes on Australian Antarctic stations. Environ Behav. 2006;38(3):356–72.

    Article  Google Scholar 

  103. Platts SH, Martin DS, Stenger MB, Perez SA, Ribiero LC, Summers R, Meck JV. Cardiovascular adaptions to long-duration head-down bed rest. Aviat Space Environ Med. 2009;80(5, Section II Suppl):A29–36.

    Article  PubMed  Google Scholar 

  104. Mars Institute. HMP Research Station-Haughton-Mars Project. 2009 (updated 2009; cited May 21, 2009); http://www.marsonearth.org/. Accessed 18 Oct 2013.

  105. Palinkas LA, Suedfeld P. Psychological effects of polar expeditions. Lancet. 2008;371(9607):153–63.

    Article  PubMed  Google Scholar 

  106. Kanas NA, Salnitskiy VP, Ritsher JB, Gushin VI, Weiss DS, Saylor SA, Kozerenko OP, Marmar CR. Human interactions in space: ISS vs Shuttle/Mir. Acta Astronaut. 2006;59(1-5):413–9.

    Article  Google Scholar 

  107. Perrien DS, Akel NS, Dupont-Versteegden EE, Skinner RA, Siegel ER, Suva LJ, Gaddy D. Aging alters the skeletal response to disuse in the rat. Am J Physiol Regul Integr Comp Physiol. 2007;292(2):R988–96.

    Article  CAS  PubMed  Google Scholar 

  108. Morey-Holton E, Globus R, Kaplansky A, Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med. 2005;10:7–40.

    Article  PubMed  Google Scholar 

  109. Koc A, Emin N, Elcin AE, Elcin YM. In vitro osteogenic differentiation of rat mesenchymal stem cells in a microgravity bioreactor. J Bioact Compat Polym. 2008;23(3):244–61.

    Article  CAS  Google Scholar 

  110. Chopra V, Fadl AA, Sha J, Chopra S, Galindo CL, Chopra AK. Alterations in the virulence potential of enteric pathogens and bacterial-host cell interactions under simulated microgravity conditions. J Toxicol Environ Health A. 2006;69(14):1345–70.

    Article  CAS  PubMed  Google Scholar 

  111. Summers RL, Martin DS, Meck JV, Coleman TG. Computer systems analysis of spaceflight induced changes in left ventricular mass. Comput Biol Med. 2007;37(3):358–63.

    Article  PubMed  Google Scholar 

  112. Lamb LE. Hypoxia: an antideconditioning factor for manned space flight. Aerosp Med. 1965;36:97–100.

    Google Scholar 

  113. Lamb LE, Johnson RL, Stevens PM. Cardiovascular deconditioning during chair rest. Aerosp Med. 1964;55:646–9.

    Google Scholar 

  114. Epstein M. Renal effects on head-out water immersion in man: implications for understanding of volume homeostasis. Physiol Rev. 1978;58(3):529–81.

    CAS  PubMed  Google Scholar 

  115. Gauer OH. Recent advances in the physiology of whole body immersion. Acta Astronaut. 1975;2(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  116. Ganse B, Limper U, Bühlmeier J, Rittweger J. Petechiae: reproducible pattern of distribution and increased appearance after bed rest. Aviat Space Environ Med. 2013;84(8):864–6.

    Article  PubMed  Google Scholar 

  117. Barratt M, Pool SL. Principles of clinical medicine for spaceflight. New York, NY: Springer; 2008.

    Book  Google Scholar 

  118. Messerotti Benvenuti S, Bianchin M, Angrilli A. Posture affects emotional responses: a head down bed rest and ERP study. Brain Cogn. 2013;82(3):313–8.

    Article  PubMed  Google Scholar 

  119. Manière D. Complications of immobility and bed rest. Prevention and management. Rev Prat. 2012;62(7):1013–23.

    PubMed  Google Scholar 

  120. Dorfman TA, Levine BD, Tillery T, Peshock RM, Hastings JL, Schneider SM, Macias BR, Hargens AR. Cardiac atrophy in women following bed rest. J Appl Physiol (1985). 2007;103(1):8–16.

    Article  Google Scholar 

  121. Lee KM, Yoo SJ, Woo SJ. Central retinal vein occlusion following hypobaric chamber exposure. Aviat Space Environ Med. 2013;9(84):986–9.

    Article  Google Scholar 

  122. Pilmanis AA, Webb JT, Balldin UI, Conkin J, Fischer JR. Air break during preoxygenation and risk of altitude decompression sickness. Aviat Space Environ Med. 2010;81(10):944–50.

    Article  PubMed  Google Scholar 

  123. Opperman RA, Waldie JM, Natapoff A, Newman DJ, Jones JA. Probability of spacesuit-induced fingernail trauma is associated with hand circumference. Aviat Space Environ Med. 2010;81(10):907–13.

    Article  PubMed  Google Scholar 

  124. Strauss S, Krog RL, Feiveson AH. Extravehicular mobility unit training and astronaut injuries. Aviat Space Environ Med. 2005;76(5):469–74.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnauld E. Nicogossian MD, FACPM, FACP .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Ch 17 Analogs and Simulations (PDF 1728 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Nicogossian, A.E., Williams, D.R., Williams, R.S., Schneider, V.S. (2016). Simulations and Analogs (Test-Beds). In: Nicogossian, A., Williams, R., Huntoon, C., Doarn, C., Polk, J., Schneider, V. (eds) Space Physiology and Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6652-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6652-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6650-9

  • Online ISBN: 978-1-4939-6652-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics