Skip to main content
Log in

Artificial gravity training reduces bed rest-induced cardiovascular deconditioning

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

We studied 15 men (8 treatment, 7 control) before and after 21 days of 6º head-down tilt to determine whether daily, 1-h exposures to 1.0 Gz (at the heart) artificial gravity (AG) would prevent bed rest-induced cardiovascular deconditioning. Testing included echocardiographic analysis of cardiac function, plasma volume (PV), aerobic power (VO2pk) and cardiovascular and neuroendocrine responses to 80º head-up tilt (HUT). Data collected during HUT were ECG, stroke volume (SV), blood pressure (BP) and blood for catecholamines and vasoactive hormones. Heart rate (HR), cardiac output (CO), total peripheral resistance, and spectral power of BP and HR were calculated. Bed rest decreased PV, supine and HUT SV, and indices of cardiac function in both groups. Although PV was decreased in control and AG after bed rest, AG attenuated the decrease in orthostatic tolerance [pre- to post-bed rest change; control: −11.8 ± 2.0, AG: −6.0 ± 2.8 min (p = 0.012)] and VO2pk [pre- to post-bed rest change; control: −0.39 ± 0.11, AG: −0.17 ± 0.06 L/min (p = 0.041)]. AG prevented increases in pre-tilt levels of plasma renin activity [pre- to post-bed rest change; control: 1.53 ± 0.23, AG: −0.07 ± 0.34 ng/mL/h (p = 0.001)] and angiotensin II [pre- to post-bed rest change; control: 3.00 ± 1.04, AG: −0.63 ± 0.81 pg/mL (p = 0.009)] and increased HUT aldosterone [post-bed rest; control: 107 ± 30 pg/mL, AG: 229 ± 68 pg/mL (p = 0.045)] and norepinephrine [post-bed rest; control: 453 ± 107, AG: 732 ± 131 pg/mL (p = 0.003)]. We conclude that AG can mitigate some aspects of bed rest-induced cardiovascular deconditioning, including orthostatic intolerance and aerobic power. Mechanisms of improvement were not cardiac-mediated, but likely through improved sympathetic responsiveness to orthostatic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arya M, Paloski WH, Young LR (2007) Centrifugation protocol for the NASA Artificial Gravity-Bed Rest Pilot Study. J Gravit Physiol 14:5–8

    Google Scholar 

  • Bishop PA, Lee SM, Conza NE, Clapp LL, Moore AD, Williams WJ, Guilliams ME, Greenisen MC (1999) Carbon dioxide accumulation, walking performance, and metabolic cost in the NASA launch and entry suit. Aviat Space Environ Med 70:656–665

    PubMed  CAS  Google Scholar 

  • Buckey JC Jr, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, Gaffney FA, Blomqvist CG (1996) Orthostatic intolerance after spaceflight. J Appl Physiol 81:7–18

    PubMed  Google Scholar 

  • Bungo MW, Charles JB, Johnson PC Jr (1985) Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat Space Environ Med 56:985–990

    PubMed  CAS  Google Scholar 

  • Burge CM, Skinner SL (1995) Determination of hemoglobin mass and blood volume with CO: evaluation and application of a method. J Appl Physiol 79:623–631

    PubMed  CAS  Google Scholar 

  • Burton RR (1988) A human-use centrifuge for space stations: proposed ground-based studies. Aviat Space Environ Med 59:579–582

    PubMed  CAS  Google Scholar 

  • Burton RR (1994) Artificial gravity in space flight. J Gravit Physiol 1:15–18

    Google Scholar 

  • Burton RR, Meeker LJ (1997) Taking gravity into space. J Gravit Physiol 4:17–20

    Google Scholar 

  • Caiozzo VJ, Haddad F, Lee S, Baker M, Paloski W, Baldwin KM (2009) Artificial gravity as a countermeasure to microgravity: a pilot study examining the effects on knee extensor and plantar flexor muscle groups. J Appl Physiol 107:39–46

    Article  PubMed  CAS  Google Scholar 

  • Collett D (1999) Modelling survival data in medical research. Chapman and Hall, London

  • Convertino VA, Goldwater DJ, Sandler H (1982a) Effect of orthostatic stress on exercise performance after bedrest. Aviat Space Environ Med 53:652–657

    PubMed  CAS  Google Scholar 

  • Convertino VA, Sandler H, Webb P, Annis JF (1982b) Induced venous pooling and cardiorespiratory responses to exercise after bed rest. J Appl Physiol 52:1343–1348

    PubMed  CAS  Google Scholar 

  • Delp MD, Colleran PN, Wilkerson MK, McCurdy MR, Muller-Delp J (2000) Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity. Am J Physiol Heart Circ Physiol 278:H1866–H1873

    PubMed  CAS  Google Scholar 

  • Diggle P, Liang KY, Zeger SL (1995) Analysis of longitudinal data. Oxford Science Publications, Oxford, pp 64–67

    Google Scholar 

  • Evans JM, Stenger MB, Moore FB, Hinghofer-Szalkay H, Rossler A, Patwardhan AR, Brown DR, Ziegler MG, Knapp CF (2004) Centrifuge training increases presyncopal orthostatic tolerance in ambulatory men. Aviat Space Environ Med 75:850–858

    PubMed  Google Scholar 

  • Fritsch-Yelle JM, Charles JB, Jones MM, Beightol LA, Eckberg DL (1994) Spaceflight alters autonomic regulation of arterial pressure in humans. J Appl Physiol 77:1776–1783

    PubMed  CAS  Google Scholar 

  • Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE (1996) Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J Appl Physiol 81:2134–2141

    PubMed  CAS  Google Scholar 

  • Gharib C, Maillet A, Gauquelin G, Allevard AM, Güell A, Cartier R (1992) Results of a 4-week head down tilt with and without LBNP countermeasure: I. Volume regulating hormones. Aviat Space Environ Med 63:3–8

    PubMed  CAS  Google Scholar 

  • Greenleaf JE, Bernauer EM, Ertl AC, Trowbridge TS, Wade CE (1989) Work capacity during 30 days of bed rest with isotonic and isokinetic exercise training. J Appl Physiol 67:1820–1826

    PubMed  CAS  Google Scholar 

  • Harrison MH, Geelen G, Keil LC, Wade CA, Hill LC, Kravik SE, Greenleaf JE (1986) Effect of hydration on plasma vasopressin, renin, and aldosterone responses to head-up tilt. Aviat Space Environ Med 57:420–425

    PubMed  CAS  Google Scholar 

  • Hastreiter D, Young LR (1997) Effects of a gravity gradient on human cardiovascular responses. J Gravit Physiol 4:23–26

    Google Scholar 

  • Iwasaki KI, Sasaki T, Hirayanagi K, Yajima K (2001) Usefulness of daily +2Gz load as a countermeasure against physiological problems during weightlessness. Acta Astronaut 49:227–235

    Article  PubMed  CAS  Google Scholar 

  • Iwase S, Fu Q, Narita K, Morimoto E, Takada H, Mano T (2002) Effects of graded load of artificial gravity on cardiovascular functions in humans. Environ Med 46:29–32

    PubMed  Google Scholar 

  • Katayama K, Sato K, Akima H, Ishida K, Takada H, Watanabe Y, Iwase M, Miyamura M, Iwase S (2004) Acceleration with exercise during head-down bed rest preserves upright exercise responses. Aviat Space Environ Med 75:1029–1035

    PubMed  Google Scholar 

  • Koska J, Ksinantova L, Kvetnansky R, Marko M, Hamar D, Vigas M, Hatala R (2003) Effect of head-down bed rest on the neuroendocrine response to orthostatic stress in physically fit men. Physiol Res 52:333–339

    PubMed  CAS  Google Scholar 

  • Lee SM, Bennett BS, Hargens AR, Watenpaugh DE, Ballard RE, Murthy G, Ford SR, Fortney SM (1997) Upright exercise or supine lower body negative pressure exercise maintains exercise responses after bed rest. Med Sci Sports Exerc 29:892–900

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Moore AD Jr, Fritsch-Yelle JM, Greenisen MC, Schneider SM (1999) Inflight exercise affects stand test responses after space flight. Med Sci Sports Exerc 31:1755–1762

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Moore AD, Everett ME, Stenger MB, Platts SH (2010) Aerobic exercise deconditioning and countermeasures during bed rest. Aviat Space Environ Med 81:52–63

    Article  PubMed  Google Scholar 

  • Levine BD, Lane LD, Watenpaugh DE, Gaffney FA, Buckey JC, Blomqvist CG (1996) Maximal exercise performance after adaptation to microgravity. J Appl Physiol 81:686–694

    PubMed  CAS  Google Scholar 

  • Martin DS, South DA, Wood ML, Bungo MW, Meck JV (2002) Comparison of echocardiographic changes after short- and long-duration spaceflight. Aviat Space Environ Med 73:532–536

    PubMed  Google Scholar 

  • Meck JV, Reyes CJ, Perez SA, Goldberger AL, Ziegler MG (2001) Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts. Psychosom Med 63:865–873

    PubMed  CAS  Google Scholar 

  • Meck JV, Waters WW, Ziegler MG, deBlock HF, Mills PJ, Robertson D, Huang PL (2003) Mechanisms of post-spaceflight orthostatic hypotension: low α1-adrenergic receptor responses before flight and central autonomic dysregulation post-flight. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00740.2003

  • Migeotte PF, Pattyn N, Vanspauwen R, Neyt X, Acheroy M, de Van HP, Wuyts FL (2009) Respiratory sinus arrhythmia on the ESA-short-arm human centrifuge. IEEE Eng Med Biol Mag 28:86–91

    Article  PubMed  Google Scholar 

  • Millet C, Custaud MA, Maillet A, Allevard AM, Duvareille M, Gauquelin-Koch G, Gharib C, Fortrat JO (2001) Endocrine responses to 7 days of head-down bed rest and orthostatic tests in men and women. Clin Physiol 21:172–183

    Article  PubMed  CAS  Google Scholar 

  • Moore AD Jr, Lee SM, Charles JB, Greenisen MC, Schneider SM (2001) Maximal exercise as a countermeasure to orthostatic intolerance after spaceflight. Med Sci Sports Exerc 33:75–80

    PubMed  Google Scholar 

  • Moore AD, Lee SMC, Stenger MB, Platts SH (2010) Cardiovascular exercise in the U.S. space program: past, present and future. Acta Astronautica 66:974–988

    Article  CAS  Google Scholar 

  • Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Gerutti S, Malliani A (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193

    PubMed  CAS  Google Scholar 

  • Pawelczyk JA, Levine BD (2002) Heterogeneous responses of human limbs to infused adrenergic agonists: a gravitational effect? J Appl Physiol 92:2105–2113

    PubMed  CAS  Google Scholar 

  • Perez SA, Charles JB, Fortner GW, Hurst V, Meck JV (2003) Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing. Aviat Space Environ Med 74:753–757

    PubMed  Google Scholar 

  • Platts SH, Ziegler MG, Waters WW, Mitchell BM, Meck JV (2004) Midodrine prescribed to improve recurrent post-spaceflight orthostatic hypotension. Aviat Space Environ Med 75:554–556

    PubMed  Google Scholar 

  • Platts SH, Shi SJ, Meck JV (2006) Akathisia with combined use of midodrine and promethazine. J Am Med Assoc 295:2000–2001

    Article  CAS  Google Scholar 

  • Platts SH, Martin DS, Stenger MB, Perez SA, Ribeiro LC, Summers R, Meck JV (2009) Cardiovascular adaptations to long-duration head-down bed rest. Aviat Space Environ Med 80:A29–A36

    Article  PubMed  Google Scholar 

  • Poulsen TD, Klausen T, Richalet JP, Kanstrup IL, Fogh-Andersen N, Olsen NV (1998) Plasma volume in acute hypoxia: comparison of a carbon monoxide rebreathing method and dye dilution with Evans’ blue. Eur J Appl Physiol Occup Physiol 77:457–461

    Article  PubMed  CAS  Google Scholar 

  • Ramsdell CD, Mullen TJ, Sundby GH, Rostoft S, Sheynberg N, Aljuri N, Maa M, Mukkamala R, Sherman D, Toska K, Yelle J, Bloomfield D, Williams GH, Cohen RJ (2003) Midodrine prevents orthostatic intolerance associated with simulated spaceflight. J Appl Physiol 90:2245–2248

    Google Scholar 

  • Riviere D, Pere A, Crampes F, Beauville M, Guell A, Garrigues M (1990) Physical fitness before and after one month head-down bedrest, with and without lower body negative pressure. Physiologist 33:S34–S35

    PubMed  CAS  Google Scholar 

  • Schmedtje JF Jr, Liu WL, Taylor AA (1996) Cardiovascular deconditioning through head-down tilt bed rest increases blood pressure variability and plasma renin activity. Aviat Space Environ Med 67:539–546

    PubMed  Google Scholar 

  • Schrage WG, Woodman CR, Laughlin MH (2000) Hindlimb unweighting alters endothelium-dependent vasodilation and ecNOS expression in soleus arterioles. J Appl Physiol 89:1483–1490

    PubMed  CAS  Google Scholar 

  • Shi SJ, South DA, Meck JV (2004) Fludrocortisone does not prevent orthostatic hypotension in astronauts after spaceflight. Aviat Space Environ Med 75:235–239

    PubMed  CAS  Google Scholar 

  • Sigaudo D, Fortrat JO, Allevard AM, Maillet A, Cottet-Emard JM, Vouillarmet A, Hughson RL, Gauquelin-Koch G, Gharib C (1998) Changes in the sympathetic nervous system induced by 42 days of head-down bed rest. Am J Physiol 274:H1875–H1884

    PubMed  CAS  Google Scholar 

  • Stauss HM (2007) Identification of blood pressure control mechanisms by power spectral analysis. Clin Exp Pharmacol Physiol 34:362–368

    Article  PubMed  CAS  Google Scholar 

  • Stenger MB, Evans JM, Patwardhan AR, Moore FB, Hinghofer-Szalkay H, Rossler A, Ziegler MG, Knapp CF (2007) Artificial gravity training improves orthostatic tolerance in ambulatory men and women. Acta Astronautica 60:267–272

    Article  Google Scholar 

  • Stremel RW, Convertino VA, Bernauer EM, Greenleaf JE (1976) Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest. J Appl Physiol 41:905–909

    PubMed  CAS  Google Scholar 

  • Thomsen JK, Fogh-Andersen N, Bulow K, Devantier A (1991) Blood and plasma volumes determined by carbon monoxide gas, 99mTc-labelled erythrocytes, 125I-albumin and the T 1824 technique. Scand J Clin Lab Invest 51:185–190

    Article  PubMed  CAS  Google Scholar 

  • Vernikos J, Ludwig DA, Ertl AC, Wade CE, Keil L, O’Hara D (1996) Effect of standing or walking on physiological changes induced by head down bed rest: implications for spaceflight. Aviat Space Environ Med 67:1069–1079

    PubMed  CAS  Google Scholar 

  • Vil-Viliams IF (1994) Principle approaches to selection of the short-arm centrifuge regimens for extended space flight. Acta Astronaut 33:221–229

    Article  PubMed  CAS  Google Scholar 

  • Warren LE, Reinertson R, Camacho ME, Paloski WH (2007) Implementation of the NASA Artificial Gravity Bed Rest Pilot Study. J Gravit Physiol 14:1–4

    Google Scholar 

  • Watenpaugh DE, Breit GA, Buckley TM, Ballard RE, Murthy G, Hargens AR (2004) Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP. J Appl Physiol 96:2153–2160

    Article  PubMed  Google Scholar 

  • Waters WW, Ziegler MG, Meck JV (2002) Post-spaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol 92:586–594

    PubMed  Google Scholar 

  • White PD, Nyberg JW, Finney LM, White WJ (1966) Influence of periodic centrifugation on cardiovscular functions of man during bed rest. Douglas Aircraft, Co, Inc, Report DAC-59286

  • White RJ, Leonard JI, Srinivasan RS, Charles JB (1991) Mathematical modeling of acute and chronic cardiovascular changes during Extended Duration Orbiter (EDO) flights. Acta Astronaut 23:41–51

    Article  PubMed  CAS  Google Scholar 

  • Whitehead J (1997) The design and analysis of sequential clinical trials. 2nd edn. Wiley, New York

  • Young LR (1999) Artificial gravity considerations for a mars exploration mission. Ann N Y Acad Sci 871:367–378

    Article  PubMed  CAS  Google Scholar 

  • Zhang LF (2001) Vascular adaptation to microgravity: what have we learned? J Appl Physiol 91:2415–2430

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the UTMB GCRC nursing staff, the Short Radius Centrifuge team, the subjects who participated in the study and JSC Cardiovascular Laboratory team members that participated in data collection and reduction, particularly Christine Ribeiro, Shang-Jin Shi, Ph.D., Timothy Matz, David Martin, and Natalia Arzeno-González. We would also like to thank Alan Feiveson, Ph.D., for statistical support. This study was supported by the NASA Human Research Program, and conducted at the NIH-funded [M01 RR 0073] GCRC at UTMB, Galveston, TX.

Conflict of interest

None of the authors has a potential or real conflict-of-interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Stenger.

Additional information

Communicated by Dag Linnarsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenger, M.B., Evans, J.M., Knapp, C.F. et al. Artificial gravity training reduces bed rest-induced cardiovascular deconditioning. Eur J Appl Physiol 112, 605–616 (2012). https://doi.org/10.1007/s00421-011-2005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2005-1

Keywords

Navigation