Skip to main content

Abstract

Fusaric acid (FA) and fusarins are two polyketides produced by a broad range of Fusarium species. Different methods have been developed for detection and structural analysis of both compounds. Some of the fusarins are mutagenic while FA is a plant toxin that contributes to the severity of different crop diseases. Examples of FA toxicity against plants, amoebas, bacteria, and viruses are given. Animals and humans are also affected by consumption of FA-contaminated feed and food, respectively. Their symptoms are hypotension, lack of appetite, vomit, and loss of weight. This chapter describes some of the many different pharmacological effects on humans. Fusarin and FA gene clusters have recently been identified and characterized in Fusarium fujikuroi and have been compared to the ones in other species. Both mycotoxins are produced under nitrogen excess and are regulated by pH. Regulation of the clusters has been studied at gene expression level, and the effect of global regulators such as velvet complex, LaeA or histone acetylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown DW, Butchko RAE, Busman M, Proctor RH. Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol. 2012;49:521–32.

    Article  CAS  PubMed  Google Scholar 

  2. Glen AE. Mycotoxigenic Fusarium species in animal feed. Animal Feed Sci Technol. 2007;137:213–40.

    Article  CAS  Google Scholar 

  3. Morgavi DP, Riley RT. An historical overview of field disease outbreaks known or suspected to be caused by consumption of feeds contaminated with Fusarium toxins. Animal Feed Sci Technol. 2007;137:201–12.

    Article  CAS  Google Scholar 

  4. Krasnoff SB, Sommers CH, Moon Y-S, Donzelli BGG, Vandenberg JD, Churchill ACL, et al. Production of mutagenic metabolites by Metarhizium anisopliae. J Agric Food Chem. 2006;54:7083–8.

    Article  CAS  PubMed  Google Scholar 

  5. Wiebe LA, Bjeldanes LF. Fusarin C, a mutagen from Fusarium moniliforme grown on corn. J Food Sci. 1981;46:1424–6.

    Article  CAS  Google Scholar 

  6. Gelderblom WCA, Marasas WFO, Steyn PS, Thiel PG, Van Der Merwe KJ, Van Rooyen PH, et al. Structure elucidation of fusarin C, a mutagen produced by Fusarium moniliforme. J Chem Soc Chem Commun. 1984;7:122–4.

    Article  Google Scholar 

  7. Savard ME, Miller DJ. Characterization of fusarin F, a new fusarin from Fusarium moniliforme. J Nat Prod. 1992;55:64–70.

    Article  CAS  Google Scholar 

  8. Bacon CW, Porter JK, Norred WP, Leslie JF. Production of fusaric acid by Fusarium species. Appl Environ Microbiol. 1996;62:4039–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Abbas HK, Mirocha CJ, Kommedahl T, Vesonder RF, Golinski P. Production of trichothecene and non-trichothecene mycotoxins by Fusarium species isolated from maize in Minnesota. Mycopathologia. 1989;108:55–8.

    Article  CAS  PubMed  Google Scholar 

  10. Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, Espino JJ, et al. Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog. 2013;9: e1003475.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Amalfitano C, Pengue R, Andolfi A, Vurro M, Zonno MC, Evidente A. HPLC analysis of fusaric acid, 9,10-dehydrofusaric acid and their methyl esters, toxic metabolites from weed pathogenic Fusarium species. Phytochem Anal. 2002;13:277–82.

    Article  CAS  PubMed  Google Scholar 

  12. Burmeister HR, Grove MD, Peterson RE, Weisleder D, Plattner RD. Isolation and characterization of two new fusaric acid analogs from Fusarium moniliforme NRRL 13,163. Appl Environ Microbiol. 1985;50:311–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Capasso R, Evidente A, Cutignano A, Vurro M, Zonno MC, Bottalico A. Fusaric and 9,10-dehydrofusaric acids and their methyl esters from Fusarium nygamai. Phytochemistry. 1996;41:1035–9.

    Article  CAS  Google Scholar 

  14. Niehaus E-M, von Bargen KW, Espino JJ, Pfannmüller A, Humpf H-U, Tudzynski B. Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol. 2014;98(4):1749–62.

    Article  CAS  PubMed  Google Scholar 

  15. Vischetti C, Esposito A. Degradation and transformation of a potential natural herbicide in three soils. J Agric Food Chem. 1999;47:3901–4.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng SJ, Jiang YZ, Li MH, Lo HZ. A mutagenic metabolite produced by Fusarium moniliforme isolated from Linxian county, China. Carcinogenesis. 1985;6:903–5.

    Article  CAS  PubMed  Google Scholar 

  17. Gelderblom WCA, Thiel PG, van der Merwe KJ. Metabolic activation and deactivation of fusarin C, a mutagen produced by Fusarium moniliforme. Biochem Pharmacol. 1984;33:1601–3.

    Article  CAS  PubMed  Google Scholar 

  18. Gelderblom WCA, Thiel PG, Marasas WFO, van Der Merwe KJ. Natural occurrence of fusarin C, a mutagen produced by Fusarium moniliforme, in corn. J Agric Food Chem. 1984;32:1064–7.

    Article  CAS  Google Scholar 

  19. Desjardins AE. Other selected mycotoxins. In: Desjardins AE, editor. Fusarium mycotoxins. St. Paul: The American Phytopathological Society; 2006, pp. 109–29

    Google Scholar 

  20. Gelderblom WCA, Thiel PG, van der Merwe KJ, Marasas WFO, Spies HSC. A mutagen produced by Fusarium moniliforme. Toxicon. 1983;21:467–73.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu B, Jeffrey AM, Fusarin C. Isolation and identification of two microsomal metabolites. Chem Res Toxicol. 1993;6:97–101.

    Article  CAS  PubMed  Google Scholar 

  22. Jaskiewicz K, van Rensburg SJ, Marasas WF, Gelderblom WC. Carcinogenicity of Fusarium moniliforme culture material in rats. J Natl Cancer Inst. 1987;78:321–5.

    CAS  PubMed  Google Scholar 

  23. Gelderblom WCA, Thiel PG, Jaskiewicz K, Marasas WFO. Investigations on the carcinogenicity of fusarin C—a mutagenic metabolite of Fusarium moniliforme. Carcinogenesis. 1986;7:1899–901.

    Article  CAS  PubMed  Google Scholar 

  24. Gelderblom WCA, Thiel PG, van Der Merwe KJ. The role of rat liver microsomal enzymes in the metabolism of the fungal metabolite fusarin C. Food Chem Toxicol. 1988;26:31–6.

    Article  CAS  PubMed  Google Scholar 

  25. Sondergaard TE, Hansen FT, Purup S, Nielsen AK, Bonefeld-Jorgensen EC, Giese H, Sorensen JL. Fusarin C acts like an estrogenic agonist and stimulates breast cancer cells in vitro. Toxicol Lett. 2011;205:116–21.

    Article  CAS  PubMed  Google Scholar 

  26. Dong ZY, Zhan YH. Inhibitory effect of a mycotoxin, fusarin C, on macrophage activation and macrophage mediated cytotoxicity to tumor cells in mice. J Exp Clin Cancer Res. 1987;6:31–8.

    CAS  Google Scholar 

  27. Gäumann E. Fusaric acid as a wilt toxin. Phytopathology. 1957;47:342–57.

    Google Scholar 

  28. Stipanovic RD, Wheeler MH, Puckhaber LS, Liu J, Bell AA, Williams HJ. Nuclear magnetic resonance (NMR) studies on the biosynthesis of fusaric acid from Fusarium oxysporum f. sp. vasinfectum. J Agric Food Chem. 2011;59:5351–6.

    Article  CAS  PubMed  Google Scholar 

  29. Bekker EE, Dovletmuradov KD, Pushkareva ID, Poletaeva VF, Shilina SG, Yasakova EI. Nature and biosynthesis of the toxin of the causative agents of fusariosis wilt, the mechanism of its actions, and its possible transformation within the cotton plant. Izv Akad Nauk SSSR Ser Biol. 1971;5:749–54.

    Google Scholar 

  30. Becker SE, Pushkareva ID, Poletaeva VF, Shilina SG, Yasakova EI. Nature and biosynthesis of Fusarium wilt toxin, its mechanism of action, and its transformation in the cotton plant. Bodenkultur. 1972;23:256–71.

    CAS  Google Scholar 

  31. Shilina, SG, Bekker ZE, Goshaev MG. Isolation and comparative characterization of vivotoxin from wilt-infected cotton plants and of fusaric acid. Ekologo-Fiziologlcheskle Metody Bor’be Fuzarioznym Viltom Khlop. 1973;2:219–30. [Chem. Abstracts, 84, 39502 (1976)]

    Google Scholar 

  32. D’Alton A, Etherton B. Effects of fusaric acid on tomato root hair membrane potentials and ATP levels. Plant Physiol. 1984;74:39–42.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Marré MT, Vergani P, Albergoni FG. Relationship between fusaric acid uptake and its binding to cell structures by leaves of Egeria densa and its toxic effects on membrane permeability and respiration. Physiol Mol Plant Pathol. 1993;42:141–57.

    Article  Google Scholar 

  34. Bouizgarne B, El-Maarouf-Bouteau H, Frankart C, Reboutier D, Madiona K, Pennarun AM, et al. Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects. New Phytol. 2006;169:209–18.

    Article  CAS  PubMed  Google Scholar 

  35. Bouizgarne B, El-Maarouf-Bouteau H, Madiona K, Biligui B, Monestiez M, Pennarun AM, et al. A putative role for fusaric acid in biocontrol of the parasitic angiosperm Orobanche ramosa. Mol Plant Microbe Interact. 2006;19:550–6.

    Article  CAS  PubMed  Google Scholar 

  36. Dong X, Ling N, Wang M, Shen Q, Guo S. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiol Biochem. 2012;60:171–9.

    Article  CAS  PubMed  Google Scholar 

  37. Fernández-Pol JA. Conservation of multifunctional ribosomal protein metallopanstimulin-1 (RPS27) through complex evolution demonstrates its key role in growth regulation in Archaea, eukaryotic cells, DNA repair, translation and viral replication. Cancer Genomics Proteomics. 2011;8:105–26.

    PubMed  Google Scholar 

  38. Stack Jr BC, Hansen JP, Ruda JM, Jaglowski J, Shvidler J, Hollenbeak CS. Fusaric acid: a novel agent and mechanism to treat HNSCC. Otolaryngol Head Neck Surg. 2004;131:54–60.

    Article  PubMed  Google Scholar 

  39. Ramautar A, Mabandla M, Blackburn J, Daniels WM. Inhibition of HIV-1 tat-induced transactivation and apoptosis by the divalent metal chelators, fusaric acid and picolinic acid—implications for HIV-1 dementia. Neurosci Res. 2012;74:59–63.

    Article  CAS  PubMed  Google Scholar 

  40. Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, et al. Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol. 2000;182:1215–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Bacon CW, Hinton DM, Porter JK, Glenn AE, Kuldau G. Fusaric acid, a Fusarium verticillioides metabolite, antagonistic to the endophytic biocontrol bacterium Bacillus mojavensis. Can J Bot. 2004;82:878–85.

    Article  CAS  Google Scholar 

  42. Notz R, Maurhofer M, Dubach H, Haas D, Defago G. Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol. 2002;68:2229–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Schouten A, van den Berg G, Edel-Hermann V, Steinberg C, Gautheron N, Alabouvette C, et al. Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant Microbe Interact. 2004;17:1201–11.

    Article  CAS  PubMed  Google Scholar 

  44. Toyoda H, Katsuragi K, Tamai T, Ouchi S. DNA sequence of genes for detoxification of fusaric acid, a wilt-inducing agent produced by Fusarium species. J Phytopathol. 1991;133:265–77.

    Article  CAS  Google Scholar 

  45. Karlovsky P. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Nat Toxins. 1999;7:1–23.

    Article  CAS  PubMed  Google Scholar 

  46. Hu RM, Liao ST, Huang CC, Huang YW, Yang TC. An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS One. 2012;7:e51053.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Booton GC, Visvesvara GS, Byers TJ, Kelly DJ, Fuerst PA. Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. J Clin Microbiol. 2005;43:1689–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Boonman N, Prachya S, Boonmee A, Kittakoop P, Wiyakrutta S, Sriubolmas N, et al. In vitro acanthamoebicidal activity of fusaric acid and dehydrofusaric acid from an endophytic fungus Fusarium sp. Tlau3. Planta Med. 2012;78:1562–7.

    Article  CAS  PubMed  Google Scholar 

  49. Iovieno A, Ledee DR, Miller D, Alfonso EC. Detection of bacterial endosymbionts in clinical acanthamoeba isolates. Ophthalmology. 2010;117:445–52, 452.e1–3

    Google Scholar 

  50. Hidaka H, Nagatsu T, Takeya K, Takeuchi T, Suda H. Fusaric acid, a hypotensive agent produced by fungi. J Antibiot. 1969;22:228–30.

    Article  CAS  PubMed  Google Scholar 

  51. Terasawa F, Ying LH, Kameyama M. The hypotensive effect of fusaric acid: the results of long-term administration of fusaric acid in elderly hypertensive patients. Jpn Circ J. 1976;40: 1017–23.

    Article  CAS  PubMed  Google Scholar 

  52. Matsuzaki M, Yoshida A, Akutsu S, Tsuchida M, Okuyama D. Studies on toxicity of fusaric acid-Ca. IV. Chronic toxicity in dogs. Jpn J Antibiot. 1976;29:518–42.

    CAS  PubMed  Google Scholar 

  53. Matsuzaki M, Yoshida A, Tsuchida M, Sekino M, Asano M. Studies on toxicity of fusaric acid-Ca. III. Subacute toxicity. Jpn J Antibiot. 1976;29:491–517.

    CAS  PubMed  Google Scholar 

  54. Smith TK, MacDonald EJ. Effect of fusaric acid on brain regional neurochemistry and vomiting behavior in swine. J Anim Sci. 1991;69:2044–9.

    CAS  PubMed  Google Scholar 

  55. Smith TK, McMillan EG, Castillo JB. Effect of feeding blends of Fusarium mycotoxin-contaminated grains containing deoxynivalenol and fusaric acid on growth and feed consumption of immature swine. J Anim Sci. 1997;75:2184–91.

    CAS  PubMed  Google Scholar 

  56. Boermans HJ, Leung MC. Mycotoxins and the pet food industry: toxicological evidence and risk assessment. Int J Food Microbiol. 2007;119:95–102.

    Article  CAS  PubMed  Google Scholar 

  57. Leathwood PD. Tryptophan availability and serotonin synthesis. Proc Nutr Soc. 1987;46:143–56.

    Article  CAS  PubMed  Google Scholar 

  58. Chaouloff F, Laude D, Merino D, Serrurrier B, Elghozi JL. Peripheral and central short-term effects of fusaric acid, a DBH inhibitor, on tryptophan and serotonin metabolism in the rat. J Neural Transmission. 1986;65:219–32.

    Article  CAS  Google Scholar 

  59. Wang H, Ng TB. Pharmacological activities of fusaric acid (5-butylpicolinic acid). Life Sci. 1999;65:849–56.

    Article  CAS  PubMed  Google Scholar 

  60. Rimando AM, Porter JK. Fusaric acid increases melatonin levels in the weanling rat and in pineal cell cultures. J Toxicol Environ Health. 1997;50:275–84.

    Article  CAS  PubMed  Google Scholar 

  61. Hidaka H. Fusaric (5-butylpicolinic) acid, an inhibitor of dopamine beta-hydrolase, affects serotonin and noradrenaline. Nature. 1971;231:54–5.

    Article  CAS  PubMed  Google Scholar 

  62. Dove S. Picolinic acids as inhibitors of dopamine β-monooxygenase: QSAR and putative binding site. Arch Pharm (Weinheim). 2004;337:645–53.

    Article  CAS  Google Scholar 

  63. Vesonder RF, Gasdorf IE, Peterson RE. Comparison of the cytotoxicities of Fusarium metabolites and Alternaria metabolite AAL-toxin to cultured mammalian cell lines. Arch Environ Contam Toxicol. 1993;24:473–7.

    Article  CAS  PubMed  Google Scholar 

  64. Fernández-Pol JA, Klos DJ, Hamilton PD. A growth factor inducible gene encodes a novel protein with zinc finger structure. J Biol Chem. 1993;268:21198–204.

    PubMed  Google Scholar 

  65. Jaglowski JR, Stack Jr BC. Enhanced growth inhibition of squamous cell carcinoma of the head and neck by combination therapy of fusaric acid and paclitaxel or carboplatin. Cancer Lett. 2006;243:58–63.

    Article  CAS  PubMed  Google Scholar 

  66. Samadi L, Shahsavan Behboodi B. Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2. Planta. 2006;225:223–34.

    Article  CAS  PubMed  Google Scholar 

  67. Jiao J, Zhou B, Zhu X, Gao Z, Liang Y. Fusaric acid induction of programmed cell death modulated through nitric oxide signalling in tobacco suspension cells. Planta. 2013;238: 727–37.

    Article  CAS  PubMed  Google Scholar 

  68. Utsumi R, Hadama T, Noda M, Toyoda H, Hashimoto H, Ohuchi S. Cloning of fusaric acid-detoxifying gene from Cladosporium werneckii: a new strategy for the prevention of plant diseases. J Biotechnol. 1988;8:311–6.

    Article  CAS  Google Scholar 

  69. Berthiller F, Crews C, Dall’Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J. Masked mycotoxins: a review. Mol Nutr Food Res. 2013;57:165–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Kluepfel D. Über die Biosynthese und die Umwandlung von Fusarinsäure in Tomatenpflanzen. Phytopathol Z. 1957;29:349–79.

    CAS  Google Scholar 

  71. Keller NP, Hohn TM. Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol. 1997;21:17–29.

    Article  CAS  Google Scholar 

  72. Díaz-Sánchez V, Avalos J, Limón MC. Identification and regulation of fusA, The polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. Appl Environ Microbiol. 2012;78:7258–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Niehaus E-M, Kleigrewe K, Wiemann P, Studt L, Sieber CMK, Connolly LR, et al. Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insides into the regulation and fusarin biosynthetic pathway. Chem Biol. 2013;20:1055–66.

    Article  CAS  PubMed  Google Scholar 

  74. Song Z, Cox RJ, Lazarus CM, Simpson TJ. Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chembiochem. 2004;5:1196–203.

    Article  CAS  PubMed  Google Scholar 

  75. Brown DW, Butchko RAE, Baker SE, Proctor RH. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium. Fungal Biol. 2012;116:318–31.

    Article  CAS  PubMed  Google Scholar 

  76. Gaffoor I, Brown DW, Plattner R, Proctor RH, Qi W, Trail F. Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryot Cell. 2005;4:1926–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Kleigrewe K, Niehaus E-M, Wiemann P, Tudzynski B, Humpf H-U. New approach via gene knockout and single-step chemical reaction for the synthesis of isotopically labeled fusarin C as an internal standard for the analysis of this Fusarium mycotoxin in food and feed samples. J Agric Food Chem. 2012;60:8350–5.

    Article  CAS  PubMed  Google Scholar 

  78. Donzelli BGG, Krasnoff SB, Churchill ACL, Vandenberg JD, Gibson DM. Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 in Metarhizium robertsii. Curr Genet. 2010;56:151–62.

    Article  CAS  PubMed  Google Scholar 

  79. Kleigrewe K, Söhnel AC, Humpf H-U. A new high-performance liquid chromatography-tandem mass spectrometry method based on dispersive solid phase extraction for the determination of the mycotoxin fusarin C in corn ears and processed corn samples. J Agric Food Chem. 2011;59:10470–6.

    Article  CAS  PubMed  Google Scholar 

  80. Thiel PG, Gelderblom WCA, Marasas WFO, Nelson PE, Wilson TM. Natural occurrence of moniliformin and fusarin C in corn screenings known to be hepatocarcinogenic in rats. J Agric Food Chem. 1986;34:773–5.

    Article  CAS  Google Scholar 

  81. Li M-X, Cheng S-J. Carcinogenesis of esophageal cancer in Linxian, China. Chin Med J. 1984;97:311–6.

    CAS  PubMed  Google Scholar 

  82. Barrero AF, Sánchez JF, Enrique Oltra J, Tamayo N, Cerdá-Olmedo E, Candau R, et al. Fusarin C and 8Z-fusarin C from Gibberella fujikuroi. Phytochemistry. 1991;30:2259–63.

    Article  CAS  Google Scholar 

  83. Eilbert F, Thines E, Arendholz WR, Sterner O, Anke H. Fusarin C, (7Z)-fusarin C and (5Z)-fusarin C. Inhibitors of dihydroxynaphthalene-melanin biosynthesis from Nectria coccinea (Cylindrocarpon sp.). J Antibiot. 1997;50:443–5.

    Article  CAS  PubMed  Google Scholar 

  84. Kleigrewe K, Aydin F, Hogrefe K, Piecuch P, Bergander K, Würthwein E, et al. Structure elucidation of new fusarins revealing insights in the rearrangement mechanisms of the Fusarium mycotoxin fusarin C. J Agric Food Chem. 2012;60:5497–505.

    Article  CAS  PubMed  Google Scholar 

  85. Gaddamidi V, Bjeldanes LF, Shoolery JN, Fusarin C. Structure determination by natural abundance 13C-13C coupling and deuterium-induced 13C shifts. J Agric Food Chem. 1985;33:652–4.

    Article  CAS  Google Scholar 

  86. Scott PM, Lawrence GA, Matula TI. Analysis of toxins of Fusarium moniliforme. In: Steyn PS, Vleggaar R, editors. Mycotoxins and phycotoxins. Amsterdam: Elsevier; 1985. p. 306–16.

    Google Scholar 

  87. Steyn PS, Vleggaar R. Biosynthetic studies on the fusarins, metabolites of Fusarium moniliforme. J Chem Soc Chem Comm. 1985;17:1189–91

    Google Scholar 

  88. Bever Jr RJ, Couch LH, Sutherland JB, Williams AJ, Beger RD, Churchwell MI, et al. DNA adduct formation by Fusarium culture extracts: lack of role of fusarin C. Chem Biol Interact. 2000;128:141–57.

    Article  CAS  PubMed  Google Scholar 

  89. Farber JM, Sanders GW. Production of fusarin C by Fusarium spp. J Agric Food Chem. 1986;34:963–6.

    Article  CAS  Google Scholar 

  90. Jackson MA, Stewart JN, Peterson RE, Slininger PJ. Fusarin C purification and measurement in submerged cultures of Fusarium moniliforme by high-performance liquid chromatography. J Agric Food Chem. 1990;38:1511–4.

    Article  CAS  Google Scholar 

  91. Tseng TC, Chung CS, Li I. Production of fusarin C mycotoxin by Fusarium moniliforme isolates of Taiwan. Bot Bul Acad Sinica. 1990;31:169–74.

    CAS  Google Scholar 

  92. Cantalejo MJ, Torondel P, Amate L, Carrasco JM, Hernández E. Detection of fusarin C and trichothecenes in Fusarium strains from Spain. J Basic Microbiol. 1999;39:143–53.

    Article  CAS  PubMed  Google Scholar 

  93. Farber JM, Sanders GW. Fusarin C production by North American isolates of Fusarium moniliforme. Appl Environ Microbiol. 1986;51:381–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Nielsen KF, Smedsgaard J. Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A. 2003;1002:111–36.

    Article  CAS  PubMed  Google Scholar 

  95. Maragos CM, Busman M, Plattner RD. Development of monoclonal antibodies for the fusarin mycotoxins. Food Addit Contam. 2008;25:105–14.

    Article  CAS  Google Scholar 

  96. Lu F-X, Jeffrey AM. Isolation, structural identification, and characterization of a mutagen from Fusarium moniliforme. Chem Res Toxicol. 1993;6:91–6.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu B, Jeffrey AM. Stability of fusarin C: effects of the normal cooking procedure used in China and pH. Nutr Cancer. 1992;18:53–8.

    Article  CAS  PubMed  Google Scholar 

  98. Zähner H (1954) Die Bestimmung der Fusarinsäure mit Hilfe der Papierchromatographie. Phytopathol Z 22:227–8.

    Google Scholar 

  99. Lakshminarayanan K, Subramanian D. Chromatographic detection and estimation of fusaric acid. Experientia. 1957;13:350–1.

    Article  CAS  Google Scholar 

  100. Dobson TA, Desaty D, Brewer D, Vining LC. Biosynthesis of fusaric acid in cultures of Fusarium oxysporum Schlecht. Can J Biochem. 1967;45:809–23.

    Article  CAS  PubMed  Google Scholar 

  101. Paterson RRM, Rutherford MA. A simplified rapid technique for fusaric acid detection in Fusarium strains. Mycopathologia. 1991;113:171–3.

    Article  CAS  Google Scholar 

  102. Fung KK, Koda RT, Maronde RF, Cohen JL. Rapid GLC determination of fusaric acid in biological fluids. J Pharm Sci. 1976;65:596–8.

    Article  CAS  PubMed  Google Scholar 

  103. Fogliano V, Monti SM, Ferracane R, Ambrosino P, Grottola A, Ritieni A. Rapid fusaric acid analysis by GC-MS. Annali Della Facolt. Di Agraria Della R. Universit. Di Napoli Federico II—Portici. 1999;33:9–14

    Google Scholar 

  104. Meyer K, Wenz S, Bauer J. Vorkommen und Nachweis von Fusarinsäure in Weizen. Mycotox Res. 2002;18:70–3.

    Article  Google Scholar 

  105. Porter JK, Bacon CW, Wray EM, Hagler Jr WM. Fusaric acid in Fusarium moniliforme cultures, corn, and feeds toxic to livestock and the neurochemical effects in the brain and pineal gland of rats. Nat Toxins. 1995;3:91–100.

    Article  CAS  PubMed  Google Scholar 

  106. Smith TK, Sousadias MG. Fusaric acid content of swine feedstuffs. J Agric Food Chem. 1993;41:2296–9.

    Article  CAS  Google Scholar 

  107. Mogensen JM, Sørensen SM, Sulyok M, van der Westhuizen L, Shephard GS, Frisvad JC, et al. Single-kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011;28:1724–34.

    CAS  PubMed  Google Scholar 

  108. Shimshoni JA, Cuneah O, Sulyok M, Krska R, Galon N, Sharir B, et al. Mycotoxins in corn and wheat silage in Israel. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013;30:1614–25.

    Article  CAS  PubMed  Google Scholar 

  109. van Pamel E, Verbeken A, Vlaemynck G, De Boever J, Daeseleire E. Ultrahigh-performance liquid chromatographic-tandem mass spectrometric multimycotoxin method for quantitating 26 mycotoxins in maize silage. J Agric Food Chem. 2011;59:9747–55.

    Article  PubMed  CAS  Google Scholar 

  110. Li J, Jiang G, Yang B, Dong X, Feng L, Lin S, Chen F, Ashraf M, Jiang Y, A luminescent bacterium assay of fusaric acid produced by Fusarium proliferatum from banana. Anal Bioanal Chem. 2012;402:1347–54.

    Article  CAS  PubMed  Google Scholar 

  111. Braun R. Ueber Wirkungsweise und Umwandlungen der Fusarinsäure. Phytopathol Z. 1960;39:197–241.

    Article  Google Scholar 

  112. Pitel DW, Vining LC. Accumulation of dehydrofusaric acid and its conversion to fusaric and 10-hydroxyfusaric acids in cultures of Gibberella fujikuroi. Can J Biochem. 1970;48:623–30.

    Article  CAS  PubMed  Google Scholar 

  113. Stoll C. Über Stoffwechsel und biologisch wirksame Stoffe von Gibberella fujikuroi (Saw.) Woll., dem Erreger der Bakanaekrankheit. Phytopathol Z. 1954;22:233–74.

    Google Scholar 

  114. Rees DO, Bushby N, Cox RJ, Harding JR, Simpson TJ, Willis CL. Synthesis of [1,2-13C2, 15N]-L-homoserine and its incorporation by the PKS-NRPS system of Fusarium moniliforme into the mycotoxin fusarin C. Chembiochem. 2007;8:46–50.

    Article  CAS  PubMed  Google Scholar 

  115. Desaty D, McInnes AG, Smith DG, Vining LC. Use of 13C in biosynthetic studies. Incorporation of isotopically labelled acetate and aspartate in fusaric acid. Can J Biochem. 1968;46:1293–300.

    Article  CAS  PubMed  Google Scholar 

  116. Hill RD, Unrau AM, Canvin DT. The biosynthesis of fusaric acid from 14C-labelled acetate in Gibberella fujikuroi. Can J Chem. 1966;44:2077–82.

    Article  CAS  Google Scholar 

  117. Bömke C, Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry. 2009;70(15–16):1876–93.

    Article  PubMed  CAS  Google Scholar 

  118. Studt L, Wiemann P, Kleigrewe K, Humpf H-U, Tudzynski B. Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol. 2012;78:4468–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf H-U, et al. Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol. 2009;72:931–46.

    Article  CAS  PubMed  Google Scholar 

  120. Yabuta T, Sumiki Y, Aso K, Tamura T, Igarashi H, Tamari K. Biochemical studies on the bakanae fungus. IV. The culture conditions for producing gibberellin or fusaric acid. J Agric Chem Soc Jpn. 1939;15:1209–20.

    CAS  Google Scholar 

  121. Teichert S, Schönig B, Richter S, Tudzynski B. Deletion of the Gibberella fujikuroi glutamine synthetase gene has significant impact on transcriptional control of primary and secondary metabolism. Mol Microbiol. 2004;53:1661–75.

    Article  CAS  PubMed  Google Scholar 

  122. Wagner D, Wiemann P, Huß K, Brandt U, Fleißner A, Tudzynski B. A sensing role of the glutamine synthetase in the nitrogen regulation network in Fusarium fujikuroi. PLoS One. 2013;8(11):e80740.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev. 2012;36:1–24.

    Article  CAS  PubMed  Google Scholar 

  124. Myung K, Li S, Butchko RAE, Busman M, Proctor RH, Abbas HK, et al. FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. J Agric Food Chem. 2009;57:5089–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf H-U, et al. FfVel1 and Fflae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol. 2010;77:972–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. López-Berges MS, Hera C, Sulyok M, Schäfer K, Capilla J, Guarro J, et al. The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol. 2013;87:49–65.

    Article  PubMed  CAS  Google Scholar 

  127. Butchko RAE, Brown DW, Busman M, Tudzynski B, Wiemann P. Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet Biol. 2012;49:602–12.

    Article  CAS  PubMed  Google Scholar 

  128. Shwab EK, Jin WB, Tribus M, Galehr J, Graessle S, Keller NP. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell. 2007;6:1656–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013;11: 21–32.

    Article  CAS  PubMed  Google Scholar 

  130. Bok JW, Chiang Y, Szewczyk E, Reyes-Domingez Y, Davidson AD, Sanchez JF, et al. Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol. 2009;5:462–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Moretti A, Ferracane L, Somma S, Ricci V, Mulè G, Susca A, Ritieni A, Logrieco AF. Identification, mycotoxin risk and pathogenicity of Fusarium species associated with fig endosepsis in Apulia, Italy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010;27:718–28.

    Article  CAS  PubMed  Google Scholar 

  132. Thrane U, Adler A, Clasen PE, Galvano F, Langseth W, Lew H, Logrieco A, Nielsen KF, Ritieni A. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int J Food Microbiol. 2004;95:257–66.

    Article  CAS  PubMed  Google Scholar 

  133. Lakshminarayanan K, Subramanian D (1955) Is fusaric acid a vivotoxin? Nature 176:697–698

    Article  CAS  Google Scholar 

  134. Luz JM, Paterson RRM, Brayford D (1990) Fusaric acid and other metabolite production in Fusarium oxysporum f. sp. vasinfectum. Lett Appl Microbiol 11:141–144

    Article  CAS  Google Scholar 

  135. Ďuračková Z, Betina V, Nemec P (1976) Systematic analysis of mycotoxins by thin-layer chromatography. J Chromatogr 116:141–154

    Article  PubMed  Google Scholar 

  136. Kalyanasundaram R (1955) Bioassay of Fusarium toxin. Agar-cup method for quantitative evaluation (only abstract in English). J Indian Bot Soc 34:43–46

    CAS  Google Scholar 

  137. Šrobárová A, Eged S, Teixeira Da Silva J, Ritieni A, Santini A (2009) The use of Bacillus subtilis for screening fusaric acid production by Fusarium spp. Czech J Food Sci 27:203–209

    Google Scholar 

  138. Appell M, Jackson MA, Wang LC, Ho C-H, Mueller A (2014) Determination of fusaric acid in maize using molecularly imprinted SPE clean-up. J Sep Sci 37:281–286

    Article  CAS  PubMed  Google Scholar 

  139. Abia WA, Warth B, Sulyok M, Krska R, Tchana AN, Njobeh PB, Dutton MF, Moundipa PF (2013) Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control 31:438–453

    Article  CAS  Google Scholar 

  140. Warth B, Parich A, Atehnkeng J, Bandyopadhyay R, Schuhmacher R, Sulyok M, Krska R (2012) Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method. J Agric Food Chem 60:9352–9363

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Carmen Limón or Bettina Tudzynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Niehaus, EM. et al. (2014). Fusarins and Fusaric Acid in Fusaria . In: Martín, JF., García-Estrada, C., Zeilinger, S. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1191-2_11

Download citation

Publish with us

Policies and ethics