Skip to main content

A Geometric Approach to Phase Resetting Estimation Based on Mapping Temporal to Geometric Phase

  • Chapter
  • First Online:
Phase Response Curves in Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 6))

Abstract

The membrane potential is the most commonly traced quantity in both numerical simulations and electrophysiological experiments. One quantitative measure of neuronal activity that could be extracted from membrane potential is the firing period. The phase resetting curve (PRC) is a quantitative measure of the relative change in the firing period of a neuron due to external perturbations such as synaptic inputs. The experimentally recorded periodic oscillations of membrane potential represent a one-dimensional projection of a closed trajectory, or limit cycle, in neuron’s multidimensional phase space. This chapter is entirely dedicated to the study of the relationship between the PRC and the geometry of the phase space trajectory. This chapter focuses on systematically deriving the mappings σ=σ(φ, μ) between the temporal phase φ and the geometric phase σ when some parameters μ are perturbed. For this purpose, both analytical approaches, based on the vector fields of a known theoretical models, and numerical approaches, based on experimentally recorded membrane potential, are discussed in the context of phase space reconstruction of limit cycle. The natural reference frame attached to neuron’s unperturbed limit cycle, γ breaks the perturbation of control parameter μ into tangent and normal displacements relative to the unperturbed γ. Detailed derivations of PRC in response to weak tangent and normal, perturbations of γ are provided. According to the geometric approach to PRC prediction, a hard, external perturbation forces the figurative point to cross the excitability threshold, or separatrix, in the phase space. The geometric method for PRC prediction detailed in this chapter gives accurate predictions both for hard inhibitory and excitatory perturbations of γ. The geometric method was also successfully generalized to a more realistic case of a neuron receiving multiple inputs per cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arshavsky, Y. I., Beloozerova, I. N., Orlovsky, G. N., Panchin, Y. V., & Pavlova, G. A. (1985). Control of locomotion in marine mollusc Clione limacina. I. Efferent activity during actual and fictitious swimming. Exp. Brain Res. 58, 255–262.

    Google Scholar 

  • Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., & Tsimring, L.Sh. (1993). The analysis of observed chaotic data in physical systems. Rev. Mod. Phys., 65(4), 1331–1392.

    Article  Google Scholar 

  • Baker, G.L., & Gollub, J.B. (1996). Chaotic Dynamics: An Introduction. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Bal, T., Nagy, F., & Moulins, M. (1988). The pyloric central pattern generator in crustacean: a set of conditional neuronal oscillators. J. Comp. Physiol., 163, 715–727.

    Article  Google Scholar 

  • Bartos, M., & Nusbaum M.P. (1997). Intercircuit control of motor pattern modulation by presynaptic inhibition. J. Neurosci., 17, 2247–2256.

    PubMed  CAS  Google Scholar 

  • Bean, B.P. (2007). The action potential in mammalian central neurons. Nat. Rev. Neurosci., 8, 451–465.

    Article  PubMed  CAS  Google Scholar 

  • Beer, R. D., Chiel, H. J., & Gallagher, J. C. (1999). Evolution and analysis of model CPGs for walking. II. General principles and individual variability. J. Comp. Neurosci., 7, 119–147.

    Google Scholar 

  • Broomhead, D.S., & King, G.P. (1986). Extracting qualitative dynamics from experimental data. Physica D, 20, 217–236.

    Article  Google Scholar 

  • Canavier, C. C., Butera, R. J., Dror, R. O., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1997). Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generator. Biol. Cybern., 77, 367–380.

    Article  PubMed  CAS  Google Scholar 

  • Canavier, C. C., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1999). Control of multistability in ring circuits of oscillators. Biol. Cybern., 80, 87–102.

    Article  PubMed  CAS  Google Scholar 

  • Casdagli, M., Stephen, E., Farmer, J.D., Gibson, J. (1991). State space reconstruction in the presence of noise.Physica D, 51, 52–98.

    Article  Google Scholar 

  • Chiel, H. J., Beer, R. D., & Gallager J. C. (1999). Evaluation and analysis of model CPGs for walking. I. Dynamical models. J. Comp. Neurosci., 7, 1–20.

    Google Scholar 

  • Clay, J.R. (1998). Excitability of the squid giant axon revisited. J. Neurophysiol., 80, 903–913.

    PubMed  CAS  Google Scholar 

  • Coddington, E.A., & Levinson, N. (1955). Theory of Ordinary Differential Equations. McGraw-Hill, New York.

    Google Scholar 

  • Collins, J.J., & Stewart, I.N. (1993). Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlin. Sci., 3, 349–392.

    Article  Google Scholar 

  • Collins, J.J., & Richmond, S.A. (1994). Hard-wired central pattern generators for quadrupedal locomotion. Biol. Cybern., 71, 375–385.

    Article  Google Scholar 

  • Connor, J.A., Walter, D., & McKown, R. (1977). Modifications of the Hodgkin–Huxley axon suggested by experimental results from crustacean axons. Biophys. J., 18, 81–102.

    Article  PubMed  CAS  Google Scholar 

  • Eckmann, J.P., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Rev. Mod. Phys., 57, 617–620.

    Article  CAS  Google Scholar 

  • Ermentrout, G.B. (1985). The behavior of rings of coupled oscillators. J. Math. Biol., 23, 55–74.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G.B., & Kopell, N. (1991). Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math., 29, 195–217.

    Google Scholar 

  • Ermentrout, G.B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G.B. (2002). Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia.

    Book  Google Scholar 

  • FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys., 17, 257–278.

    Article  Google Scholar 

  • Fraser, A.M., & Swinney, H.L. (1986). Independent coordinates for strange attractors. Phys. Rev., 33A, 1134–1140.

    Google Scholar 

  • Golubitsky, M., Stewart, I., Buono, P.-L., & Collins, J.J. (1998). A modular network for legged locomotion. Physica D., 115, 56–72.

    Article  Google Scholar 

  • Grassberger, P. (1983). Generalized Dimensions of Strange Attractors. Physics Letters A, 97(6), 227–230.

    Article  Google Scholar 

  • Grassberger, P., & Procaccia, I. (1983). Estimation of Kolmogorov entropy from a chaotic signal. Phys. Rev. A, 28, 2591–2599.

    Article  Google Scholar 

  • Grassberger, P., & Procaccia, I. (1983). Characterization of Strange Attractors. Physical Review Letters, 50 (5), 346–349.

    Article  Google Scholar 

  • Guckenheimer, J. (1975). Isochrons and phaseless sets. J Math Biol., 1, 259–273.

    Article  Google Scholar 

  • Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcation of the vector fields. Berlin: Springer-Verlag

    Google Scholar 

  • Hille, B. (2001). Ion channels of excitable membranes. Sunderland, MA: Sinauer.

    Google Scholar 

  • Hirsch, M.W., Smale, S., & Devaney, R.L. (2004). Differential Equations, Dynamical Systems and an Introduction to Chaos. Academic Press, Elsevier, San Diego.

    Google Scholar 

  • Hegger, R., Kantz, H., & Schreiber, T. (1999). Practical implementation of nonlinear time series methods: the TISEAN package. Chaos, 9,413–435.

    Article  PubMed  Google Scholar 

  • Hodgkin, A.L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol., 107, 165–181.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952a). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol., 116, 449–472.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952b). The components of membrane conductance in the giant axon of Loligo. J. Physiol., 116, 473–496.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952c). The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol., 116, 497–506.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952d). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hoppensteadt, F.C., & Izhikevich, E.M. (1997). Weakly connected neural networks. New York: Springer-Verlag.

    Book  Google Scholar 

  • Ijspeert, A.J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.

    Article  PubMed  Google Scholar 

  • Izhikevich, E.M. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press.

    Google Scholar 

  • Kennel, M.B., Brown, R., & Abarbanel, H.D.I. (1992). Determining embedding dimension for phase-space reconstruction using a geometric construction, Phys. Rev. A., 45, 3403.

    Article  PubMed  Google Scholar 

  • Keener, J., Sneyd, J. (1998). Mathematical Physiology. Springer-Verlag, New York.

    Google Scholar 

  • Kopell, N., & Ermentrout, G.B. (1988). Coupled oscillators and the design of central pattern generators. Math. Biol., 90, 87–109.

    Google Scholar 

  • Mane, R. (1981). On the dimension of the compact invariant sets of certain nonlinear maps. in D. A. Rand and L.-S. Young. Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol 898. Springer-Verlag. pp. 230–242.

    Google Scholar 

  • Marder, E., & Calabrese, R.L. (1996). Principles of rhythmic motor patter generation. Physiol Rev., 76, 687–717.

    PubMed  CAS  Google Scholar 

  • Marder, E., Manor, Y., Nadim, F., Bartos, M., & Nusbaum, M.P. (1998). Frequency control of a slow oscillatory network by a fast rhythmic input: pyloric to gastric mill interactions in the crab stomatogastric nervous system. Ann. NY Acad. Sci., 860, 226–238.

    Article  PubMed  CAS  Google Scholar 

  • Milnor, J. (1985). On the concept of attractor. Commun. Math. Phys., 99, 177–195.

    Article  Google Scholar 

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35, 193–213.

    Article  PubMed  CAS  Google Scholar 

  • Mulloney, B. (1977). Organization of the stomatogastric ganglion of the spiny lobster. V. Coordination of the gastric and pyloric systems. J. Comp. Physiol., 122, 227–240.

    Google Scholar 

  • Murray, J.D. (1993). Mathematical biology. New York: Springer-Verlag.

    Book  Google Scholar 

  • Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962) An active pulse transmission line simulating nerve axon. Proc. IRE, 50, 2061–2070.

    Article  Google Scholar 

  • Nayfeh, A.H., & Balachandran, B. (1995). Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. New York: Wiley.

    Book  Google Scholar 

  • Nishii, J. (1999). A learning model of a periodic locomotor pattern by the central pattern generator, Adaptive Behavior, 7(2), 137–149.

    Article  Google Scholar 

  • Nishii, J. (2006). An analytical estimation of the energy cost for legged locomotion, Journal of Theoretical Biology, 238, 636–645.

    Article  PubMed  Google Scholar 

  • Oprisan, S.A., & Canavier, C.C. (2000). Phase response curve via multiple time scale analysis of limit cycle behavior of type I and type II excitability. Biophys J., 78(1), 218A.

    Google Scholar 

  • Oprisan, S.A., & Canavier, C.C. (2001). Stability Analysis of Rings of Pulse-Coupled Oscillators: The Effect of Phase Resetting in the Second Cycle After the Pulse Is Important at Synchrony and For Long Pulses. Differential Equations and Dynamical Systems, 9(3–4), 243–258.

    Google Scholar 

  • Oprisan, S.A., & Canavier, C.C. (2002). The influence of limit cycle topology on the phase resetting curve. Neural Computation, 14, 1027–1057.

    Article  PubMed  Google Scholar 

  • Oprisan, S.A., Thirumulai, V., Marder, E., & Canavier, C.C. (2002). Phase resetting in neural oscillators as a component of circuit analysis. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society. Engineering in Medicine and Biology 3:1960–1961.

    Google Scholar 

  • Oprisan, S.A., Thirumalai, V., & Canavier, C.C. (2003). Dynamics from a time series: Can we extract the phase resetting curve from a time series? Biophysical Journal, 84, 2919–2928.

    Article  PubMed  CAS  Google Scholar 

  • Oprisan, S.A., & Canavier, C.C. (2003). Stability analysis of entrainment by two periodic inputs with a fixed delay.Neurocomputing, 52–54, 59–63.

    Article  Google Scholar 

  • Oprisan, S.A., Prinz, A.A., & Canavier, C.C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophys. J., 87, 2283–2298.

    Article  PubMed  CAS  Google Scholar 

  • Oprisan, S.A., & Canavier, C.C. (2005). Stability criterion for a two-neuron reciprocally coupled network based on the phase and burst resetting curves. Neurocomputing, 65, 733–739.

    Article  Google Scholar 

  • Oprisan, S.A., & Canavier, C.C. (2006). Technique for eliminating nonessential components in the refinement of a model of dopamine neurons. Neurocomputing, 69, 1030–1034.

    Article  Google Scholar 

  • Oprisan, S.A., & Boutan, C, (2008), Prediction of Entrainmnet and 1:1 Phase-Locked Modes in Two-Neuron Networks Based on the Phase Resetting Curve Method. International Journal of Neuroscience 118, 867–890.

    Article  PubMed  Google Scholar 

  • Oprisan, S.A. (2009). Stability of Synchronous Oscillations in a Periodic Network. International Journal of Neuroscience, 119(4), 482–491.

    Article  PubMed  Google Scholar 

  • Ott, E. (1993). Chaos in Dynamical Systems. New York: Cambridge University Press.

    Google Scholar 

  • Packard, N., Crutchfield, J., Farmer, D., & Shaw, R. (1980). Geometry from a time series. Physical Review Letters, 45, 712–716.

    Article  Google Scholar 

  • Pavlides, T. (1973). Biological Oscillators: Their Mathematical Analysis. Academic Press, New York.

    Google Scholar 

  • Pearson, K. (1993). Common principles of motor control in vertebrates and invertebrates. Annu. Rev. Neurosci., 16, 256–297.

    Article  Google Scholar 

  • Prinz, A.A., Thirumalai, V., Marder, E. (2003). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J. Neurosci., 23, 943–954.

    PubMed  CAS  Google Scholar 

  • Rabinovitch, A., & Rogachevskii, I. (1999). Threshold, excitability and isochrones in the Bonhoeffer–van der Pol system. Chaos, 9, 880.

    Article  PubMed  Google Scholar 

  • Rinzel, J., & Lee, Y.S. (1986). On different mechanisms for membrane potential bursting. In H. G. Othmer (Ed.), Nonlinear oscillations in biology and chemistry. New York: Springer-Verlag.

    Google Scholar 

  • Rinzel, J., Ermentrout, G.B. (1998). Analysis of neural excitability and oscillations. In C. Koch and I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (pp. 251–292). Cambridge, MA:MIT Press.

    Google Scholar 

  • Robertson, R.M., & Pearson, K.G. (1985). Neural circuits in the flight system of locusts. J. Neurophysiol., 53, 110–128.

    PubMed  CAS  Google Scholar 

  • Ruelle, D., & Takens, F. (1971). On the nature of turbulence. Commun. Math. Phys., 20, 167–192.

    Article  Google Scholar 

  • Sauer, T., Yorke, J.A., & Casdagli, M. (1991). Embedology. J. Stat. Phys., 65, 579–616.

    Article  Google Scholar 

  • Sauer, T., & Yorke, J. (1993). How many delay coordinates do you need? Int. J. Bifurcation and Chaos, 3, 737.

    Article  Google Scholar 

  • Schouten, J.C., Takens, F., & van den Bleek, G.M. (1994). Estimating the dimension of a noisy attractor.Phys. Rev. E, 50, 1851–1861.

    Article  Google Scholar 

  • Schreiber, T. (1995). Efficient neighbor searching in nonlinear time series analysis, Int. J. Bifurcation and Chaos, 5, 349.

    Article  Google Scholar 

  • Selverston, A.I., & Moulins, M. (1987). The crustacean stomatogastric system. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Takens, F. (1981). Detecting strange attractors in turbulence. in D. A. Rand and L.-S. Young. Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898. Springer-Verlag. pp. 366–381.

    Google Scholar 

  • Wiggins, S. (1994). Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer-Verlag, New York.

    Google Scholar 

  • Winfree, A.T. (1980). The geometry of biological time. Springer-Verlag, New York.

    Google Scholar 

  • Winfree, A.T. (1987). The Timing of Biological Clocks. Scientific American Books. New York.

    Google Scholar 

  • Wolf, A., Swift, J.B., Swinney, H.L., & Vastano, J.A. (1985). Determining Lyapunov exponents from a time series. Physica D, 16, 285–317.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank my former postdoc advisor, Dr. Carmen C. Canavier, for introducing me to the fascinating field of phase resetting, and for the freedom she has allowed me in pursuing my own ideas and interests. I deeply appreciate the guidance, support, and inspiration she has given me.

I would especially like to thank my wife, Dr. Ana Oprisan, for her patience, good humor, and to my children Andrei and Andra for their understanding and patience. I dedicate this work to the memory of my parents.

I gratefully acknowledge the helpful comments and feedback I received from reviewers while preparing this chapter.

This work was partly supported by the National Science Foundation CAREER grant IOS – 1054914 to SAO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorinel Adrian Oprisan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Oprisan, S.A. (2012). A Geometric Approach to Phase Resetting Estimation Based on Mapping Temporal to Geometric Phase. In: Schultheiss, N., Prinz, A., Butera, R. (eds) Phase Response Curves in Neuroscience. Springer Series in Computational Neuroscience, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0739-3_6

Download citation

Publish with us

Policies and ethics