Skip to main content

Microbial Fuel Cells for Bioenergy and Bioproducts

  • Chapter
  • First Online:
Sustainable Bioenergy and Bioproducts

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Redox reactions are essential in microbial bioenergetics. Oxidation of an organic carbon and reduction of an oxidant such as oxygen, sulfate and nitrate in the cytoplasm of a microbe. This respiration process provides energy for various cellular activities and maintenance as well as building blocks for organic syntheses. Because the cellular respiration efficiency is around 40, 60% of the energy is released in the form of unrecoverable low-grade heat. No electricity is produced from the redox reaction because the electrons released by the oxidation reaction are taken up locally by the reduction reaction in the cytoplasm. The purpose of a microbial fuel cell (MFC) is to harvest the electrons from organic carbon oxidation by employing electrogenic microbes to donate the electrons to an anode in the absence of an utilizable oxidant around the anode. The electrons flow through an external circuit to drive a load before returning to a cathode where they are used for reduction of an oxidant. MFCs can digest low-grade organic carbon sources while yielding high Coulombic efficiencies. They present a potentially attractive alternative for the sustainable production of bioenergy and bioproducts from renewable organic feed streams through biocatalysis by microorganisms. In recent years, heightened concerns over depleting fossil fuel supplies, most noticeably petroleum, and global warming due to increased carbon emission, many efforts have been devoted to MFC research to debottleneck various factors that hamper practical applications of MFCs. Although no large-scale applications have been reported, the improvements in MFC designs and operations have made MFCs closer to eventual practical applications in the production of bioenergy and bioproducts from feed streams that are typically wastes such as wastewater. This chapter reviews various advances in the understanding of MFC mechanisms, reactor designs and operations for improved production of renewable bioenergy and bioproducts such as hydrogen, methane, hydrogen peroxide and ethanol. The limitations, areas for improvement and perspectives for future outlooks of MFCs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajayi FF, Kim KY, Chae KJ et al (2010) Effect of hydrodymamic force and prolonged oxygen exposure on the performance of anodic biofilm in microbial electrolysis cells. Int J Hydrogen Energy 35:3206–3213

    Article  Google Scholar 

  2. Aldrovandi A, Marsili E, Stante L et al (2009) Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell. Bioresour Technol 100:3252–3260

    Article  Google Scholar 

  3. Allen RM, Bennetto HP (1993) Microbial fuel cells: electricity production from carbohydrates. Appl Biochem Biotechnol 39:27–40

    Article  Google Scholar 

  4. Aulenta F, Catervi A, Majone M et al (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:2554–2559

    Article  Google Scholar 

  5. Aulenta F, Canosa A, Reale P et al (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103:85–91

    Article  Google Scholar 

  6. Aulenta F, Reale P, Canosa A et al (2010) Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethane. Biosens Bioelectron 25:1796–1802

    Article  Google Scholar 

  7. Behera M, Jana PS, Ghangrekar JMM (2010) Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresour Technol 101:1183–1189

    Article  Google Scholar 

  8. Bennetto HP (1990) Electricity generation by microorganisms. Biotechnol Educ 1:163–168

    Google Scholar 

  9. Bennetto HP, Stirling JL, Tanaka K et al (1983) Anodic reactions in microbial fuel cells. Biotechnol Bioeng 25:559–568

    Article  Google Scholar 

  10. Biffinger JC, Pietron J, Ray R et al (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 22(8):1672–1679

    Article  Google Scholar 

  11. Biffinger JC, Pietron J, Bretschger O et al (2008) The influence of acidity on microbial fuel cell containing Shewanella oneidensis. Biosens Bioelectron 24(4):906–911

    Article  Google Scholar 

  12. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  Google Scholar 

  13. Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71(4):2186–2189

    Article  Google Scholar 

  14. Borole A, O’Neill H, Tsouris C et al (2008) A microbial fuel cell operating at low pH using the acidophile acidiphilium cryptum. Biotechnol Lett 30:1367–1372

    Article  Google Scholar 

  15. Call DF, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406

    Article  Google Scholar 

  16. Call DF, Merrill MD, Logan BE (2009) High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ Sci Technol 43:2179–2183

    Article  Google Scholar 

  17. Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45:6962–6984

    Article  Google Scholar 

  18. Cao X, Huang X, Liang P et al (2009) A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ Sci 2:441–548

    Article  Google Scholar 

  19. Chae KJ, Choi MJ, Lee J et al (2008) Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. Int J Hydrog Energy 33:5184–5192

    Article  Google Scholar 

  20. Chang IS, Jang JK, Gil GC et al (2004) Continuous determination of biochemical oxygen demand using a microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613

    Article  Google Scholar 

  21. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  Google Scholar 

  22. Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  Google Scholar 

  23. Cheng S, Liu H, Logan BE (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494

    Article  Google Scholar 

  24. Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496

    Article  Google Scholar 

  25. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA 104:18871–18873

    Article  Google Scholar 

  26. Cheng S, Xing DF, Call DF et al (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958

    Article  Google Scholar 

  27. Cheng S, Xing DF, Logan BE (2011) Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens Bioelectron 26(5):1913–1917

    Article  Google Scholar 

  28. Chiao M, Lam KB, Lin LW (2006) Micromachined microbial and photosynthetic fuel cells. J Micromech Microeng 16(12):2547–2553

    Article  Google Scholar 

  29. Clauwaert P, Van Der Ha D, Boon N et al (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569

    Article  Google Scholar 

  30. Clauwaert P, Rabaey K, Aelterman P et al (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  Google Scholar 

  31. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836

    Article  Google Scholar 

  32. Cohen B (1931) The bacterial culture as an electrical half-cell. J Bacteriol 21:18–19

    Google Scholar 

  33. Cooney MJ, Roschi E, Marison IW et al (1996) Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell. Enzyme Microb Technol 18(5):358–365

    Article  Google Scholar 

  34. Cournet A, Délia M-L, Bergel A et al (2010) Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochem Commun 12:505–508

    Article  Google Scholar 

  35. Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrogen Energy 35:8855–8861

    Article  Google Scholar 

  36. Dávila D, Esquivel JP, Sabaté M et al (2011) Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron 26(5):2426–2430

    Article  Google Scholar 

  37. Delaney GM, Bennetto HP, Mason JR et al (1984) Electron‐transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism—mediator—substrate combinations. J Chem Technol Biotechnol 34B:13–27

    Google Scholar 

  38. Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482

    Article  Google Scholar 

  39. Dumas C, Mollica A, Féron D et al (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53(2):468–473

    Article  Google Scholar 

  40. Dumas C, Basseguy R, Bergel A (2008) Microbial electrocatalysis with geobacter sulfur reducens biofilm on stainless steel cathodes. Electrochim Acta 53:2494–2500

    Article  Google Scholar 

  41. Fakhru’l-Razi A, Pendashteh A, Abdullah LC et al (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170(2–3):530–551

    Article  Google Scholar 

  42. Fan Y, Hu H, Liu H (2007) Enhanced columbic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171:348–354

    Article  Google Scholar 

  43. Fan Y, Hu H, Liu H (2007) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol 41(23):8154–8158

    Article  Google Scholar 

  44. Feng YJ, Wang X, Logan BE et al (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880

    Article  Google Scholar 

  45. Feng CH, Ma L, Li F et al (2010) A polypyrrole/anthraqu- inone-2, 6-disulphonic disodium salt (PPy/AQDS)- modified anode to improve performance of microbial fuel cells. Biosens Bioelectron 25:1516–1520

    Article  Google Scholar 

  46. Feng YJ, Yang Q, Wang X et al (2010) Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cell. J Power Source 195:1841–1844

    Article  Google Scholar 

  47. Foller PC, Bombard RT (1995) Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J Appl Electrochem 25:613–627

    Article  Google Scholar 

  48. Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919

    Article  Google Scholar 

  49. Freguia S, Rabaey K, Yuan Z et al (2008) Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42:1387–1396

    Article  Google Scholar 

  50. Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electronchim Acta 55:813–818

    Article  Google Scholar 

  51. Gil GC, Chang IS, Kim BH et al (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    Article  Google Scholar 

  52. Gorby YA, Beveridge TJ (2005) Composition, reactivity and regulation of extracellular metal-reducing structures (nanowires) produced by dissimilatory metal reducing bacteria. Presented at DOE/NABIR meeting, Warrenton, 20 April 2005

    Google Scholar 

  53. Gorby YA, Yanina S, McLean JS et al (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 103:11358–11363

    Article  Google Scholar 

  54. Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947

    Article  Google Scholar 

  55. Habermann W, Pommer EH (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35(1):128–133

    Article  Google Scholar 

  56. Han YF, Yu CL, Liu H (2010) A microbial fuel cell as power supply for implantable medical devices. Biosens Bioelectron 25:2156–2160

    Article  Google Scholar 

  57. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267

    Article  Google Scholar 

  58. He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015

    Article  Google Scholar 

  59. He Z, Huang YL, Manohar AK et al (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochem 74:78–82

    Article  Google Scholar 

  60. Holmes DE, Nicoll JS, Bond DR et al (2004) Potential role of a novel psychrotolerant member of the family Geobacteraceae Geopsychrobacter electrodiphilus, gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70(10):6023–6030

    Article  Google Scholar 

  61. Holmes DE, Bond DR, Lovley DR (2004) Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70(2):1234–1237

    Article  Google Scholar 

  62. Hou HJ, Li L, Cho Y et al (2009) Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. Plos One 4(8):e6570

    Article  Google Scholar 

  63. Hu HQ, Fan YZ, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42(15):4172–4178

    Article  Google Scholar 

  64. Hu HQ, Fan YZ, Liu H (2009) Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int J Hydrog Energy 34:8535–8542

    Article  Google Scholar 

  65. Huang LP, Chen JW, Quan X et al (2010) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioproc Biosyst Eng 33:937–945

    Article  Google Scholar 

  66. Huang LP, Chai XL, Cheng S et al (2011) Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem Eng J 166(2):652--661

    Google Scholar 

  67. Huang LP, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102(1):316–323

    Article  Google Scholar 

  68. Hrapovic S, Manuel MF, Luong JHT et al (2010) Electrodeposition of nickel particles on a gas diffusion cathode for hydrogen production in a microbial electrolysis cell. Int J Hydrog Energy 35:7313–7320

    Article  Google Scholar 

  69. Ieropoulos I, Winfield J, Greenman J (2010) Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresour Technol 101:3520–3525

    Article  Google Scholar 

  70. Ishii S, Watanabe K, Yabuki S et al (2008) Comparison of electrode reduction activities of Geobacter sulfurreducen and an enriched consortium in an air-cathode microbial fuel cell. Appl Environ Microbio 74:7348–7355

    Article  Google Scholar 

  71. Jadhav GS, Ghangrekar MM (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100:717–723

    Article  Google Scholar 

  72. Jang JK, Pham TH, Chang IS et al (2004) Construction and operation of a novel mediator-and membraneless microbial fuel cell. Process Biochem 39:1007–1012

    Article  Google Scholar 

  73. Jeremiasse AW, Hamelers HVM, Buisman CJN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochem 78:39–43

    Article  Google Scholar 

  74. Kang KH, Jang JK, Pham TH et al (2003) A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett 25(16):1357–1361

    Article  Google Scholar 

  75. Karim GW (2008) The world energy crisis-Part 2: Some more vacuum-based solutions. Vacuum 82(6):679

    Google Scholar 

  76. Kiely PD, Cusick RD, Call DF et al (2011) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour Technol 102:388–394

    Article  Google Scholar 

  77. Kim BH, Kim HJ, Hyun MS et al (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131

    Google Scholar 

  78. Kim BH, Iketa T, Park HS et al (1999) Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13:475–478

    Article  Google Scholar 

  79. Kim BH, Chang IS, Gil GC et al (2003) Novel BOD sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545

    Article  Google Scholar 

  80. Kim BH, Chang IS, Gadd GM (2007) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485–494

    Article  Google Scholar 

  81. Kim HJ, Park HS, Hyun MS et al (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30(2):145–152

    Article  Google Scholar 

  82. Kim JR, Cheng S, Oh SE et al (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009

    Article  Google Scholar 

  83. Kim M, Youn SM, Shin SH et al (2003) Practical field application of a novel BOD monitoring system. J Environ Monit 5:640–643

    Article  Google Scholar 

  84. Kim M, Hyun MS, Gadd GM et al (2007) A novel biomonitoring system using microbial fuel cells. J Environ Monit 9:1323–1328

    Article  Google Scholar 

  85. Kim N, Choi Y, Jung S et al (2000) Development of microbial fuel cells using Proteus vulgaris. Bull Korean Chem Soc 21(1):44–48

    Google Scholar 

  86. Kim N, Choi Y, Jung S et al (2000) Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol Bioeng 70(1):109–114

    Article  Google Scholar 

  87. Kumlanghan A, Liu J, Thavarungkul P et al (2007) Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens Bioelectron 22:2939–2944

    Article  Google Scholar 

  88. Kyazze G, Popov A, Dinsdale R et al (2010) Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. Int J Hydrogen Energy 35:7716–7722

    Article  Google Scholar 

  89. Lalaurette E, Thammannagowda S, Mohagheghi A et al (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrogen Energy 34:6201–6210

    Article  Google Scholar 

  90. Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, New Jersey

    Google Scholar 

  91. Lee HS, Torres CI, Parameswaran P et al (2009) Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Environ Sci Technol 43(20):7971–7976

    Article  Google Scholar 

  92. Lee HS, Rittman BE (2010) Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell. Environ Sci Technol 44:948–954

    Article  Google Scholar 

  93. Lee HS, Rittmann BE (2010) Characterization of energy losses in an upflow single-chamber microbial electrolysis cell. Int J Hydrog Energy 35:920–927

    Article  Google Scholar 

  94. Lee HS, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271

    Article  Google Scholar 

  95. Lefebvre O, Al-Mamun A, Ng HY (2008) A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci Technol 58:881–885

    Article  Google Scholar 

  96. Lewis K (1966) Symposium on bioelectrochemistry of microorganisms IV. Biochemical fuel cells. Bacteriol Rev 30:101–113

    Google Scholar 

  97. Li WW, Sheng GP, Liu XW et al (2011) Recent advances in the separators for microbial fuel cells. Bioresour Technol 102(1):244–252

    Article  Google Scholar 

  98. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  Google Scholar 

  99. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  Google Scholar 

  100. Liu H, Cheng S, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    Article  Google Scholar 

  101. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  Google Scholar 

  102. Lo YC, Lee KS, Lin PJ et al (2009) Bioreactors configured with distributors and carriers enhance the performance of continuous dark hydrogen fermentation. Bioresour Technol 100:4381–4387

    Article  Google Scholar 

  103. Logan BE, Grot S (2005) A bioelectrochemically assisted microbial reactor (BEAMR) that generates hydrogen gas. U.S. Patent Application 60/588, 022

    Google Scholar 

  104. Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  Google Scholar 

  105. Logan BE, Regan JM (2006) Microbial fuel cells-challenges and applications. Environ Sci Technol 40:5172–5180

    Article  Google Scholar 

  106. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends microbial 14(12):512–518

    Article  Google Scholar 

  107. Logan BE, Cheng S, Watson V et al (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    Article  Google Scholar 

  108. Logan BE, Call D, Cheng S et al (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  Google Scholar 

  109. Logan BE (2009) Microbial fuel cells. Wiley, New Jersey

    Google Scholar 

  110. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  Google Scholar 

  111. Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332

    Article  Google Scholar 

  112. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Article  Google Scholar 

  113. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571

    Article  Google Scholar 

  114. Lowy DA, Tender LM, Zeikus JG et al (2006) Harvesting energy from the marine sediment water interface II: kinetic activity of anodematerials. Biosens Bioelectron 21(11):2058–2063

    Article  Google Scholar 

  115. Lorenzo MD, Curtis TP, Head IM et al (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43:3145–3154

    Article  Google Scholar 

  116. Makarieva AM, Gorshkov VG, Li BL (2008) Energy budget of the biosphere and civilization: rethinking environmental security of global renewable and non-renewable resources. Ecol Complex 5(4):281–288

    Article  Google Scholar 

  117. Manohar AK, Bretschger O, Nealson KH et al (2008) The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochem 72(2):149–154

    Article  Google Scholar 

  118. Mao L, Zhang D, Sotomura T et al (2003) Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta 48:1015–1021

    Article  Google Scholar 

  119. Matsunaga T, Karube I, Suzuki S (1980) A specific microbial sensor for formic acid. J Appl Microbiol Biotechnol 10:235–243

    Article  Google Scholar 

  120. Menicucci J, Beyenal H, Marsili E et al (2006) Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ Sci Technol 40(3):1062–1068

    Article  Google Scholar 

  121. Midilli A, Dincer I (2008) Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. Int J Hydrogen Energy 33(16):4209–4222

    Article  Google Scholar 

  122. Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39(9):1675–1686

    Article  Google Scholar 

  123. Min B, Kim JR, Oh SE et al (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  Google Scholar 

  124. Min B, Roman OB, Angelidaki I (2008) Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol Lett 30(7):1213–1218

    Article  Google Scholar 

  125. Moon H, Chang IS, Kang KH et al (2004) Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol Lett 26:1717–1721

    Article  Google Scholar 

  126. Moon H, Chang IS, Jang JK et al (2005) Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem Eng J 27:59–65

    Article  Google Scholar 

  127. Moon H, Chang IS, Jang JK et al (2005) On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. J Microbiol Biotechnol 15:192–196

    Google Scholar 

  128. Moon H, Chang IS, Kim BH (2006) Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour Technol 97:621–627

    Article  Google Scholar 

  129. More TT, Ghangrekar MM (2010) Improving performance of microbial fuel cell with ultrasonication pre-treatment of mixed anaerobic inoculum sludge. Bioresour Technol 101:562–567

    Article  Google Scholar 

  130. Nam JY, Kim HW, Lim KH et al (2010) Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosens Bioelectron 25:1155–1159

    Article  Google Scholar 

  131. Nevin KP, Richter H, Covalla SF et al (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505–2514

    Article  Google Scholar 

  132. Niessen J, Schröder U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch. Electrochem Commun 6(9):955–958

    Article  Google Scholar 

  133. Nigel WA (1999) Climate change and global water resources. Global Environ Change 9(1):31–49

    Google Scholar 

  134. Nguyen TA, Lu Y, Yang X et al (2007) Carbon and steel surfaces modified by Leptothrix discophora SP-6: characterization and implications. Environ Sci Technol 41:7987–7996

    Article  Google Scholar 

  135. Oh SE, Min B, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38:4900–4944

    Article  Google Scholar 

  136. Oh SE, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39:4673–4682

    Article  Google Scholar 

  137. Oh SE, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70:162–169

    Article  Google Scholar 

  138. Osman MH, Shah AA, Walsh FC (2010) Recent progress and continuing challenges in bio-fuel cells. Part II. Microbial Biosens Bioelectron 26(3):953–963

    Article  Google Scholar 

  139. Pant D, Van Bogaert G, Diels L et al (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  Google Scholar 

  140. Parameswaran P, Torres CI, Lee HS et al (2009) Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances. Biotechnol Bioeng 103:513–523

    Article  Google Scholar 

  141. Parameswaran P, Zhang H, Torres CI et al (2010) Microbial community structure in a biofilm anode fed with a fermensubstrate: the significance of hydrogen scavengers. Biotechnol Bioeng 105(1):69–78

    Article  Google Scholar 

  142. Park DH, Kim BH, Moore B et al (1997) Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol Tech 11:145–148

    Article  Google Scholar 

  143. Park DH, Kim SK (2000) Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotechnol Lett 22:1301–1304

    Article  Google Scholar 

  144. Park DR, Zeikus JG (1999) Utilization of electrically reduced Neutral Red by Actinobacillus succinogenes: physiological function of Neutral Red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410

    Google Scholar 

  145. Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using Neutral Red as an electronophore. Appl Environ Microbiol 66(4):1292–1297

    Article  Google Scholar 

  146. Park DH, Zeikus JG (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefucians. Appl Microbiol Biotechnol 59(1):58–61

    Article  Google Scholar 

  147. Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355

    Article  Google Scholar 

  148. Park HS, Kim BH, Kim HS et al (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7(6):297–306

    Article  Google Scholar 

  149. Pasco N, Baronian K, Jeffries C et al (2004) MICREDOX®—development of a ferricyanide-mediated rapid biochemical oxygen demand method using an immobilized Proteus vulgaris biocomponent. Biosens Bioelectron 20:524–532

    Article  Google Scholar 

  150. Pham CA, Jung SJ, Phung NT et al (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134

    Article  Google Scholar 

  151. Pham TH, Jang JK, Chang IS et al (2004) Improvement of cathode reaction of a mediatorless microbial fuel cell. J Microbiol Biotechnol 14:324–329

    Google Scholar 

  152. Pham TH, Rabaey K, Aelterman P et al (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6(3):285–292

    Article  Google Scholar 

  153. Pham TH, Aelterman P, Verstraete W (2009) Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol 27(3):168–178

    Article  Google Scholar 

  154. Powell EE, Mapiour ML, Evitts RW et al (2009) Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresour Technol 100:269–274

    Article  Google Scholar 

  155. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B Biol Sci 84:160–276

    Article  Google Scholar 

  156. Prasad D, Sivaram TK, Berchmans S et al (2006) Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent. J Power Sources 160:991–996

    Article  Google Scholar 

  157. Prasad D, Arun S, Murugesan A et al (2007) Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens Bioelectron 22:2604–2610

    Article  Google Scholar 

  158. Qian F, Baum M, Gu Q et al (2009) A 1.5 μL microbial fuel cell for on-chip bioelectricity generation. Lab on a Chip 9(21):3076–3081

    Article  Google Scholar 

  159. Qiao Y, Li CM, Bao SJ et al (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84

    Article  Google Scholar 

  160. Qiao Y, Li CM, Bao SJ et al (2008) Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem Commun 21(11):1290–1292

    Article  Google Scholar 

  161. Rabaey K, Lissens G, Siciliano SD et al (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535

    Article  Google Scholar 

  162. Rabaey K, Boon N, Siciliano SD et al (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  Google Scholar 

  163. Rabaey K, Clauwaert P, Aelterman P et al (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082

    Article  Google Scholar 

  164. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298

    Article  Google Scholar 

  165. Rabaey K, Read ST, Clauwaert P et al (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2:519–527

    Article  Google Scholar 

  166. Rabaey K, Sompel KVD, Maignien L et al (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40(17):5218–5224

    Article  Google Scholar 

  167. Rader GK, Logan BE (2010) Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int J Hydrogen Energy 35:8848–8854

    Article  Google Scholar 

  168. Reimers CE, Tender LM, Fertig S et al (2001) Harvesting energy from the marine sediment water interface. Environ Sci Technol 35:192–195

    Article  Google Scholar 

  169. Reguera G, MaCarthy KD, Mehta T et al (2005) Extracellular electron transfer via microbialnanowires. Nature 435(7045):1098–1101

    Article  Google Scholar 

  170. Reguera G, Nevin KP, Nicoll JS et al (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348

    Article  Google Scholar 

  171. Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration asan anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    Article  Google Scholar 

  172. Richter H, McCarthy K, Nevin KP et al (2008) Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24(8):4376–4379

    Article  Google Scholar 

  173. Rifkin J (2002) The hydrogen economy. Penguin Putnam, New York

    Google Scholar 

  174. Rinaldi A, Mecheri B, Garavaglia V et al (2008) Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 1:417–429

    Article  Google Scholar 

  175. Ringeisen BR, Henderson E, Wu PK et al (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40(8):2629–2634

    Article  Google Scholar 

  176. Rismani-Yazdi H, Carver SM, Christy AD et al (2008) Cathodic limitations in microbial fuel cells: An overview. J Power Sources 180:683–694

    Article  Google Scholar 

  177. Rochex A, Godon JJ, Bernet N et al (2008) Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Res 42:4915–4922

    Article  Google Scholar 

  178. Roller SD, Bennetto HP, Delaney GM et al (1984) Electron-transfer coupling in microbial fuel cells: 1 comparison of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Technol Biotechnol 34B:3–12

    Google Scholar 

  179. Rosenbaum M, Schröder U, Scholz F (2006) Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions. J Solid State Electrochem 10:872–878

    Article  Google Scholar 

  180. Rosenbaum M, Zhao F, Quaas M et al (2007) Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells. Appl Catal B Environ 74:261–269

    Article  Google Scholar 

  181. Rosenbaum M, Schröder U (2010) Photomicrobial solar and fuel cells. Electroanalysis 22:844–855

    Google Scholar 

  182. Rozendal RA, Hamelers HVM, Euverink GJW et al (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31(12):1632–1640

    Article  Google Scholar 

  183. Rozendal RA, Hamelers HVM, Molenkamp RJ et al (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membrances. Water Res 41(9):1984–1994

    Article  Google Scholar 

  184. Rozendal RA, Jeremiasse AW, Hamelers HVM et al (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  Google Scholar 

  185. Rozendal RA, Leone E, Keller J et al (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752–1755

    Article  Google Scholar 

  186. Schröder U, Niessen J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem 115:2986–2989

    Article  Google Scholar 

  187. Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    Article  Google Scholar 

  188. Selembo PA, Merrill MD, Logan BE (2009) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources 190:271–278

    Article  Google Scholar 

  189. Selembo PA, Perez JM, Lloyd WA et al (2009) High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int J Hydrogen Energy 34:5373–5381

    Article  Google Scholar 

  190. Selembo PA, Merrill MD, Logan BE (2010) Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int J Hydrogen Energy 35:428–437

    Article  Google Scholar 

  191. Sharma V, Kundu PP (2010) Biocatalysts in microbial fuel cells. Enzyme Microb Technol 47:179–188

    Article  Google Scholar 

  192. Sharma Y, Li B (2010) The variation of power generation with organic substrates in single-chamber microbial fuel cells. Bioresour Technol 101:1844–1850

    Article  Google Scholar 

  193. Shea C, Clauwaert P, Verstraete W et al (2008) Adapting a denitrifying biocathode for perchlorate. Water Sci Technol 58:1941–1946

    Article  Google Scholar 

  194. Sinyak Y (1994) Global climate and energy systems. Sci Total Environ 143:31–51

    Article  Google Scholar 

  195. Siu CPB, Chiao M (2008) A microfabricated PDMS microbial fuel cell. J Microelectromech Syst 17(6):1329–1341

    Article  Google Scholar 

  196. Sleutels THJA, Hamelers HVM, Rozendal RA et al (2009) Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int J Hydrogen Energy 34(9):3612–3620

    Article  Google Scholar 

  197. Steinbusch KJJ, Hamelers HVM, Buisman CJN (2008) Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res 42:4059–4066

    Article  Google Scholar 

  198. Steinbusch KJJ, Hamelers HVM, Schaap JD et al (2010) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44:513–517

    Article  Google Scholar 

  199. Stirling JL, Bennetto HP, Delaney GM et al (1983) Microbial fuel cells. Biochem Soc Trans 11:451–453

    Google Scholar 

  200. Strycharz SM, Woodward TL, Johnson JP et al (2008) Graphite electrodes as a sole electron donor for reductive dechlorination of tetrachloroethene by Geobacter lovleyi. Appl Environ Microbiol 74:5943–5947

    Article  Google Scholar 

  201. Tandukar M, Huber SJ, Onodera T et al (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165

    Article  Google Scholar 

  202. Tartakovsky B, Manuel MF, Neburchilov V et al (2008) Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode. J Power Sources 182:291–297

    Article  Google Scholar 

  203. Tartakovsky B, Manuela MF, Wang H et al (2009) High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrogen Energy 34:672–677

    Article  Google Scholar 

  204. Ter Heijne A, Hamelers HVM, de Wilde V et al (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200–5205

    Article  Google Scholar 

  205. Ter Heijne A, Hamelersa HVM, Sakkes M et al (2008) Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta 53(18):5697–5703

    Article  Google Scholar 

  206. Thauer RK, Stackebrandt E, Hamilton WA (2007) Energy metabolism phylogenetic diversity of sulphate-reducing bacteria. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge

    Google Scholar 

  207. Thurston CF, Bennetto HP, Delaney GM et al (1985) Glucose metabolism in a microbial fuel cell stoichiometry of product formation in a Thionine-mediated proteus vulgaris fuel cell and its relation to coulombic yields. J Gen Microbiol 131:1393–1404

    Google Scholar 

  208. Thrash JC, Van Trump IV, Weber KA et al (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746

    Article  Google Scholar 

  209. Torres CI, Marcus K, Rittmann BE (2008) Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol Bioeng 100:872–881

    Article  Google Scholar 

  210. Trinh NT, Park JH, Kim BW (2009) Increased generation of electricity in a microbial fuel cell using Geobacter sulfurreducens. Korean J Chem Eng 26(3):748–753

    Article  Google Scholar 

  211. Vega CA, Fernandez I (1987) Mediating effect of ferric chelate compounds in microbial fuel-cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens. Bioelectrochem Bioenerg 17:217–222

    Article  Google Scholar 

  212. Villano M, Aulenta F, Ciucci C et al (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Biores Technol 101:3085–3090

    Article  Google Scholar 

  213. Virdis B, Rabaey K, Yuan Z et al (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024

    Article  Google Scholar 

  214. Walker AL, Walker JCW (2006) Biological fuel cell and an application as a reserve power source. J Power Sources 160:123–129

    Article  Google Scholar 

  215. Wang AJ, Liu W, Cheng S et al (2009) Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int J Hydrogen Energy 34:3653–3658

    Article  Google Scholar 

  216. Wang AJ, Liu WZ, Ren NQ et al (2010) Key factors affecting microbial anode potential in a microbial electrolysis cell for H2 production. Int J Hydrogen Energy 35:13481–13487

    Article  Google Scholar 

  217. Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106(6):528–536

    Article  Google Scholar 

  218. Xing DF, Zuo Y, Cheng S et al (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42(11):4146–4151

    Article  Google Scholar 

  219. Xing DF, Cheng S, Regan JM et al (2009) Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron 25:105–111

    Article  Google Scholar 

  220. Xi MY, Sun YP (2008) Preliminary study on E.coli microbial fuel cell and on-electrode taming of the biocatalyst. Chinese J Process Eng 8(6):1179–1184

    Google Scholar 

  221. You SJ, Zhao QL, Zhang JN et al (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415

    Article  Google Scholar 

  222. You SJ, Ren NQ, Zhao QL et al (2009) Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fiber brush as cathode material. Fuel Cells 5:588–596

    Article  Google Scholar 

  223. Yuan Y, Kim S (2008) Polypyrrole-coated reticulated vitreous carbon as anode in microbial fuel cell for higher energy output. Bull Korean Chem Soc 29:168–172

    Article  Google Scholar 

  224. Zhang J, Zhao Q, Aelterman P et al (2008) Electricity generation in a microbial fuel cell with a microbially catalyzed cathode. Biotechnol Lett 30:1771–1776

    Article  Google Scholar 

  225. Zhang T, Cui C, Chen S et al (2006) A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem Commun 21:2257–2259

    Google Scholar 

  226. Zhang YM, Merrill MD, Logan BE (2010) The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells. Int J Hydrogen Energy 35:12020–12028

    Article  Google Scholar 

  227. Zhao F, Harnisch F, Schröder U et al (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410

    Article  Google Scholar 

  228. Zhao F, Harnisch F, Schröder U et al (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40:5193–5199

    Article  Google Scholar 

  229. Zhao F, Rahunen N, Varcoe JR et al (2008) Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ Sci Technol 42:4971–4976

    Article  Google Scholar 

  230. Zhou MH, Chi ML, Luo JM et al (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196(10):4427--4435

    Google Scholar 

  231. Zhu NW, Chen X, Zhang T et al (2011) Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Biores Technol 102(1):422–426

    Article  MathSciNet  Google Scholar 

  232. Zou YJ, Xiang CL, Yang LN et al (2008) A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrogen Energy 33:4856–4862

    Article  Google Scholar 

  233. Zou YJ, Pisciotta J, Baskakov LV et al (2010) Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells. Bioelectrochem 79:50–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingyue Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhou, M., Jin, T., Wu, Z., Chi, M., Gu, T. (2012). Microbial Fuel Cells for Bioenergy and Bioproducts. In: Gopalakrishnan, K., van Leeuwen, J., Brown, R. (eds) Sustainable Bioenergy and Bioproducts. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2324-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2324-8_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2323-1

  • Online ISBN: 978-1-4471-2324-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics