Skip to main content

Converting Low-grade Biomass to Produce Energy Using Bio-fuel Cells

  • Chapter
Eco- and Renewable Energy Materials
  • 881 Accesses

Abstract

Aerobic and anaerobic respiration of microorganisms involves redox reactions that provide energy for cell growth or maintenance. The energy comes from breaking up chemical bonds during the oxidation of organic carbons by the microorganisms. The electrons released from the oxidation are taken up by the reduction of an oxidant such oxygen, sulfate, nitrate, etc. If the oxidation and reduction reactions occur at the same place, for example, the cytoplasm of microbial cells, no electricity is produced. The energy produced will be used for cell growth or maintenance. The rest will be released as low-grade heat that cannot be harvested cost-effectively. Electrochemically, digestion of organic carbons can be split into anodic (organic carbon oxidation) and cathodic (proton reduction) reactions to produce an electric current that can be harvested when electrons from the oxidation reaction is donated to the anode and flow through an external circuit before be utilized by the reduction reaction at the cathode. Bio-fuel cells are classified into two different categories. fie is the so-called microbial fuel cell (MFC) that relies on a microbial biofilm to provide enzyme catalysis to fie anodic reaction while the other utilizes a cell-free enzyme system for catalysis. The recent energy crisis and concerns over global warming have reinvigorated interests in bio-fuel cells because their potential applications in electricity generation and biohydrogen production from renewable sources that are often low-cost or zerocost wastes. Currently, the bottleneck of real-world applications of bio-fuel cells in harnessing energy lies in their low power density and high costs, thus limiting their uses to powering small sensors or devices that require very little power. Numerous interesting and innovative approaches have been reported to increase the performances and to reduce reactor construction and operating costs of biofuel cells. Although significant hurdles remain ahead, new progresses are making bio-fuel cells closer to eventual practical applications utilizing low-grade biomass. This book chapter reviews various recent advances in bio-fuel cell research using various biomass feed stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bullen R A, Arnot T C, Lakeman J B, et al. Bio-fuel cells and their development. Biosens Bioelectron, 2006, 21, 2015–2045.

    Article  Google Scholar 

  2. Zhao F, Slade R C T, Varcoe J R. Techniques for the study and development of microbial fuel cells: An electrochemical perspective. Chem Soc Rev, 2009, 38, 1926–1939.

    Article  Google Scholar 

  3. Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol, 2006, 40(17), 5181–5192.

    Article  Google Scholar 

  4. Potter M C. Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Ser B, 1912, 84, 260–276.

    Article  Google Scholar 

  5. Moehlenbrock M J, Minteer S D. Extended lifetime bio-fuel cells. Chem Soc Rev, 2008, 37, 1188–1196.

    Article  Google Scholar 

  6. Bennetto H P. Microbial fuel cells. Life Chemistry Reports, 1984, 2, 363–453.

    Google Scholar 

  7. Kim B H, Kim H J, Hyun M S, et al. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrifaciens. J Microbiol Biotechnol, 1999, 9, 127–131.

    Google Scholar 

  8. Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol, 2003, 21, 1229–1232.

    Article  Google Scholar 

  9. Palmore G T R, Bertschy H, Bergens S H, et al. J Electroanal Chem, 1998, 443, 155–161.

    Article  Google Scholar 

  10. Minteer S D, Liaw B Y, Cooney M J. Enzyme-based bio-fuel cells. Curr Opin Biotech, 2007, 18, 228–234.

    Article  Google Scholar 

  11. Kim B H, Chang I S, Gil G C, et al. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett, 2003, 25, 541–545.

    Article  Google Scholar 

  12. Karube I, Matsunaga T, Mitsuda S, et al. Microbial electrode BOD sensors. Biotechnol Bioeng, 1977, 19, 1535–1547.

    Article  Google Scholar 

  13. Karube I, Matsunaga T, Tsuru S, et al. Biochemical fuel cell utilizing immobilized cells of Clostridium butyricum. Biotechnol Bioeng, 1977, 19, 1727–1733.

    Article  Google Scholar 

  14. Park D H, Kim B H, Moore B, et al. Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol Tech, 1997, 11, 145–148.

    Article  Google Scholar 

  15. Zhang L, Schryver P D, Gusseme B D, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Research, 2008, 42, 1–12.

    Article  Google Scholar 

  16. Wilkinson S. “Gastrobots” — Benefits and challenges of microbial fuel cells in food powered robot applications. Auton Robot, 2000, 9, 99–111.

    Article  MathSciNet  Google Scholar 

  17. Gil G C, Chang I S, Kim B H, et al, Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron, 2003, 18, 327–334.

    Article  Google Scholar 

  18. Cheng S, Logan B E. Sustainable and efficient biohydrogen production via fiectrohydrogenesis. PNAS, 2007, 104(47), 18871–18873.

    Article  Google Scholar 

  19. Oh S E, Logan B E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res, 2005, 39, 4673–4682.

    Article  Google Scholar 

  20. Cracknell J A, Vincent K A, Armstrong F A. Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis. Chem Rev 2008, 108, 2439–2461.

    Article  Google Scholar 

  21. Wagner R C, Regan J M, Oh S E, et al. hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res, 2009, 43, 1480–1488.

    Article  Google Scholar 

  22. Pothukuchy A, Mano N, Georgiou G, et al. A potentially insect-implantable trehalose electrooxidizing anode. Biosens Bioelectron, 2006, 22, 678–684.

    Article  Google Scholar 

  23. Hambourger M, Gervaldo M, Svedruzic D, et al. J Am Chem Soc, 2008, 130, 2015–2022.

    Article  Google Scholar 

  24. Campbell W H. Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50, 277–303.

    Article  Google Scholar 

  25. Liu H, Grot S, Logan B E. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Tchnol, 2005, 4317–4320.

    Google Scholar 

  26. Holzman D C. Microbe power. Environ Health Persp 2005, 113, A754–A757.

    Article  Google Scholar 

  27. Kerzenmacher S, Ducree J, Zengerle R, et al. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources, 2008, 182, 1–17.

    Article  Google Scholar 

  28. Ringeisen B R, Ray R, Little B. A miniature microbial fuel cell operating with an aerobic anode chamber. J Power Sources, 2007, 165, 591–597.

    Article  Google Scholar 

  29. Coman V, Vaz-Dominguez C, Ludwig R, et al. A membrane-, mediator-, cofactor-less glucose/oxygen bio-fuel cell. Phys Chem Chem Phys, 2008, 10, 6093–6096.

    Article  Google Scholar 

  30. Jang J K, Pham T H, Chang I S, et al. Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochem, 2004, 39, 1007–1012.

    Article  Google Scholar 

  31. Higgins I J, Hill H A O. Microbial generation and interconversion of energy sources, in Microbial Technology: Current State, Future Prospects, eds. Bull A T, Ellwood D C, Ratledge C, Cambridge University Press, Cambridge, 1979, 359–377

    Google Scholar 

  32. Gao F, Courjean O, Mano Ni. An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification. Biosens Bioelectron, 2009, 25, 356–361.

    Article  Google Scholar 

  33. Kavanagh P, Boland S, Jenkins P, et al. Performance of aGlucose/O2 Enzymatic Bio-fuel cell Containing a Mediated Melanocarpus albomyces Laccase Cathode in a Physiological Buffer. Fuel Cells, 2009, 1, 79–84.

    Article  Google Scholar 

  34. Vega C A, Fernandez I. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens. Bioelectrochem Bioenerg, 1987, 17, 217–222.

    Article  Google Scholar 

  35. Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv, 2007, 25, 464–482.

    Article  Google Scholar 

  36. Pant D, Bogaert G V, Diels L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol, 2010, 101, 1533–1543.

    Article  Google Scholar 

  37. Ivanov I, Vidakovic-Koch T, Sundmacher K. Recent advances in enzymatic fuel cells: Experiments and modeling. Energies, 2010, 3, 803–846.

    Article  Google Scholar 

  38. Logan B E, Cheng S, Watson V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sc. Technol, 2007, 41, 3341–3346.

    Article  Google Scholar 

  39. Catal T, Xu S, Li K, et al. Electricity production from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectron, 2008, 24, 855–860.

    Article  Google Scholar 

  40. Luo H, Liu G, Jin S. Phenol degradation in microbial fuel cells. Chem Eng J, 2009, 147, 259–264.

    Article  Google Scholar 

  41. Pham H, Boon N, Marzorati M, et al. Enhanced removal of 1, 2-dichloroethane by anodophilic microbial consortia. Water Res, 2009, 43, 2936–2946.

    Article  Google Scholar 

  42. Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol, 2004, 38, 4040–4046.

    Article  Google Scholar 

  43. Min B, Kim J R, Oh S E, et al. Electricity generation from swine wastewater using microbial fuel cells. Water Res, 2005, 39, 4961–4968.

    Article  Google Scholar 

  44. Kim J R, Min B, Logan B E. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol, 2005, 68, 23–30.

    Article  Google Scholar 

  45. Ramanavicius A, Ramanaviciene A. Hemoproteins in design of bio-fuel cells. Fuel Cells, 2009, 9, 25–36.

    Article  Google Scholar 

  46. Wilson R, Turner A P F. Glucose-oxidase — An ideal enzyme. Biosens Bioelectron, 1992, 7, 165–185.

    Article  Google Scholar 

  47. Guven G, Prodanovic R, Schwaneberg U. Protein Engineering — An Option for Enzymatic Bio-fuel cell Design. Electroanal, 2010, 22, 765–775.

    Article  Google Scholar 

  48. Stams A J M, de Bok F A M, Plugge C M, et al. Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol, 2006, 8, 371–382.

    Article  Google Scholar 

  49. Ieropoulos I A, Greenman J, Melhuish C, et al. Comparative study of three types of microbial fuel cell. Enzyme Microb Tech, 2005, 37, 238–245.

    Article  Google Scholar 

  50. Davis F, Higson S P J. Bio-fuel cells — Recent advances and applications. Biosens Bioelectron, 2007, 22, 1224–1235

    Article  Google Scholar 

  51. Park D H, Zeikus J G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microb, 2000, 66, 1292–1297.

    Article  Google Scholar 

  52. Schroder U, Nieben J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than on e order of magnitude. Angew Chem Int Ed, 2003, 42, 2880–2883.

    Article  Google Scholar 

  53. Choi Y, Jung E, Kim S, et al. Membrane fluidity sensoring microbial fuel cell. Bioelectrochemistry, 2003, 59, 121–127.

    Article  Google Scholar 

  54. Thurston C F, Bennetto H P, Delaney G M, et al. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thioninemediated Proteus vulgaris fuel cell and its relation to Coulombic yields. J Gen Microbiol 1985, 131, 1393–1401.

    Google Scholar 

  55. Rabaey K, Boon N, Siciliano S D, et al. Bio-fuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microb, 2004, 70, 5373–5382.

    Article  Google Scholar 

  56. Lovley D R, Holmes D E, Nevin K P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol, 2004, 49, 219–286.

    Article  Google Scholar 

  57. Vargas M, Kashefi K, Blunt-Harris E L, et al. Microbfilogical evidence for Fe(III) reduction on early earth. Nature, 1998, 395, 65–70.

    Article  Google Scholar 

  58. Scholz F, Schroder U. Bacterial batteries. Nat Biotechnol, 2003, 21, 1151–1152.

    Article  Google Scholar 

  59. Kim H J, Park H S, Hyun M S, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Tech, 2002, 30, 145–152.

    Article  Google Scholar 

  60. Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 2003, 69, 1548–1555.

    Article  Google Scholar 

  61. Min B, Cheng S, Logan B E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res, 2005, 39, 1675–1686.

    Article  Google Scholar 

  62. Niessen J, Harnisch F, Rosenbaum M, et al. Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun, 2006, 8, 869–873.

    Article  Google Scholar 

  63. Oh S E, Logan B E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol, 2006, 70, 162–169.

    Article  Google Scholar 

  64. Park H S, Kim B H, Kim H S, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 2001, 7, 297–306.

    Article  Google Scholar 

  65. Park D H, Zeikus J G. Impact of electrode composition on electricity generation in a single-compartment fuel cell suing Shewanella putrefaciens. Appl Microbiol Biotechnol, 2002, 59, 58–61.

    Article  Google Scholar 

  66. Park D H, Zeikus J G. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol, 1999, 181, 2403–2410.

    Google Scholar 

  67. Pham C A, Jung S J, Phung N T, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett, 2003, 223, 129–134.

    Article  Google Scholar 

  68. Bond D R, Holmes D E, Tender L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295, 483–485.

    Article  Google Scholar 

  69. Lee S A, Choi Y, Jung S, et al. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemistry, 2002, 57, 173–178.

    Article  Google Scholar 

  70. Rhoads A, Beyenal H, Lewandowshi Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol, 2005, 39, 4666–4671.

    Article  Google Scholar 

  71. Menicucci J, Beyenal H, Marsili E, et al. Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ Sci Technol, 2006, 40, 1062–1068.

    Article  Google Scholar 

  72. Ringeisen B R, Henderson E, Wu P K, et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol, 2006, 40, 2629–2634.

    Article  Google Scholar 

  73. Willner I, Katz E, Patolsky F, et al. Bio-fuel cell based on glucose oxidase and microperoxidase-11 monolayer-fundionalized electrodes. J Chem Soc, Perkin Trans, 1998, 2, 1817–1822.

    Article  Google Scholar 

  74. Holmes D E, Bond D R, O’Neil R A, et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecol, 2004, 48, 178–190.

    Article  Google Scholar 

  75. Willner I, Yan Y M, Willner B, et al. Integrated Enzyme-Based Bio-fuel cells-A Review. Fuel Cells, 2009, 7–24.

    Google Scholar 

  76. Sarma A K, Vatsyayan P, Goswami P, et al. Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron, 2009, 24, 2313–2322.

    Article  Google Scholar 

  77. Barriere F, Ferry Y, Rochefort D, et al. Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less bio-fuel cell. Electrochem Commun, 2004, 6, 237–241.

    Article  Google Scholar 

  78. Tasca F, Gorton L, Harreither W, et al. Highly efficient and versatile anodes for bififuel cells based on cellobiose dehydrogenase from Myriococcum thermophilum. J Phys Chem C, 2008, 112, 13668–13673.

    Article  Google Scholar 

  79. Park D H, Zeikus J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng, 2003, 81, 348–355.

    Article  Google Scholar 

  80. Lowy D A, Tender L M, Zeikus J G, et al. Harvesting energy from the marine sediment-water interface II kinetic activity of anode materials. Biosens Bioelectron, 2006, 21, 2058–2063.

    Article  Google Scholar 

  81. Niessen J, Schroder U, Rosenbaum M, et al. Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun, 2004, 6, 571–575.

    Article  Google Scholar 

  82. Niessen J, Harnisch F, Rosenbaum M, et al. Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun, 2006, 8, 869–873.

    Article  Google Scholar 

  83. Rabaey K, Verstraete W. Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 2005, 23, 291–298.

    Article  Google Scholar 

  84. James L, Andrew D, (2003) Fuel cell systems explained (2nd Edition), John, Wiley and Sons.

    Google Scholar 

  85. Aswin K M, Florian M. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochimica Acta. 2005, 54, 1664–1670.

    Google Scholar 

  86. Oliver J M, G. Duncan H, David J M. High power density proton-exchange membrane fuel cells. J Power Source. 1994, 47, 353–368.

    Article  Google Scholar 

  87. Lim C, Wang C Y. Development of high-power electrodes for a liquid-feed direct methanol fuel cell. J Power Source. 2003, 113, 145–150.

    Article  Google Scholar 

  88. Ramakrishna P A, Yang S, Sohn C H. Innovative design to improve the power density of a solid oxide fuel cell. J Power Source. 2006, 158, 378–384.

    Article  Google Scholar 

  89. Neergat M, Shukla A K. A high-performance phosphoric acid fuel cell. J Power Source. 2001, 102, 317–321.

    Article  Google Scholar 

  90. Moon H, Chang I S, Kim B H. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Biosenource Technol. 2006, 97, 621–627.

    Google Scholar 

  91. Mohan Y, Manoj-Muthu-Kumar S, Das D. Electricity generation using microbial fuel cells. Int J Hydrogen Energy. 2008, 33, 423–426.

    Article  Google Scholar 

  92. Oh SE, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol. 2004, 38, 4900–4904.

    Article  Google Scholar 

  93. Sokic-Lazic D, Minteer S D. Pyruvate/air enzymatic biofuel cell capable of complete oxidation. Electrochem. Solid-State Lett. 2009, 12, 26–28.

    Article  Google Scholar 

  94. Arechederra R L, Minteer S D. Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel Cells 2009, 9, 63–69.

    Article  Google Scholar 

  95. Sabina T, Shelley D M. Development of a membraneless ethanol/oxygen biofuel cell. Electrochim. Acta. 2006, 51, 2168–2172.

    Article  Google Scholar 

  96. Zhang X C, Ranta A, Halme A. Direct methanol biocatalytic fuel cell-Considerations of restraints on electron transfer. Biosens Bioelectron. 2006, 21, 2052–2057.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tong, M., Du, Z., Gu, T. (2013). Converting Low-grade Biomass to Produce Energy Using Bio-fuel Cells. In: Zhou, Y. (eds) Eco- and Renewable Energy Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33497-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33497-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33496-2

  • Online ISBN: 978-3-642-33497-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics