Skip to main content

Engineered High Swelling Hydrogels

  • Chapter
  • First Online:
Biomedical Applications of Hydrogels Handbook

Abstract

High swelling hydrogels (HSHs) are materials with the ability to swell to a large size in an aqueous medium. The swelling feature and mechanical properties of the HSH polymers depend on many factors. Therefore, the HSH properties can be engineered to tailor a hydrogels for a specific application. This chapter begins with the HSH anatomy and its engineering aspects, and continues with the purity of hydrogels and the sources of impurities in HSH polymers. The characterization of HSH polymers includes swelling determination, mechanical properties, and analytical issues, which will be discussed with a focus on both practical and theoretical aspects. Since final hydrogels properties are closely related to the level of its stability, this aspect is discussed by explaining the sources of instability, which potentially threaten the hydrogels properties. The chapter ends with two important groups of hydrogels that have been suggested and engineered for specific applications in pharmaceutical area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gerlach G et al (2005) Chemical and pH sensors based on the swelling behavior of hydrogels. Sens Actuators B Chem 111:555–561

    Article  CAS  Google Scholar 

  2. Gunther M et al (2005) Piezoresistive chemical sensors based on hydrogels. Tm-Technisches Messen 72(2):93–102

    Article  Google Scholar 

  3. Kuckling D et al (2003) Photo cross-linkable poly(N-isopropylacrylamide) copolymers III: micro-fabricated temperature responsive hydrogels. Polymer 44(16):4455–4462

    Article  CAS  Google Scholar 

  4. Askari F et al (1993) Synthesis and characterization of acrylic-based superabsorbents. J Appl Polym Sci 50:1851–1855

    Article  CAS  Google Scholar 

  5. Omidian H et al (1999) Modified acrylic-based superabsorbent polymers (dependence on particle size and salinity). Polymer 40:1753–1761

    Article  CAS  Google Scholar 

  6. Araujo PHH et al (2002) Techniques for reducing residual monomer content in polymers: a review. Polym Eng Sci 42(7):1442

    Article  CAS  Google Scholar 

  7. Omidian H et al (2008) Very pure superporous hydrogels having outstanding swelling properties. US Patent Application 20080206339, Abbott Laboratories

    Google Scholar 

  8. Han W, Omidian H, Rocca JG (2005) Dynamic swelling of superporous hydrogels under compression. American Association of Pharmaceutical Scientists, Tennessee, USA

    Google Scholar 

  9. Omidian H et al (1998) A model for the swelling of superabsorbent polymers. Polymer 39(26):6697–6704

    CAS  Google Scholar 

  10. Chen J et al (2000) Gastric retention properties of superporous hydrogel composites. J Control Release 64(1–3):39–51

    Article  CAS  Google Scholar 

  11. Omidian H, Rocca JG (2006) Formation of strong superporous hydrogels. US Patent 7,056,957, Kos Pharmaceuticals, USA

    Google Scholar 

  12. Omidian H, Rocca JG (2008) Superporous hydrogels for heavy duty applications. US Patent Application 20080089940, Abbott Laboratories

    Google Scholar 

  13. Gavrilas C, Omidian H, Rocca JG (2005) A novel simulator to evaluate fatigue properties of superporous hydrogels. Presented at the 8th US-Japan Symposium on Drug Delivery Systems, Hawaii, USA

    Google Scholar 

  14. Gavrilas C, Omidian H, Rocca JG (2005) A novel gastric simulator. The 32nd annual meeting of the Controlled Release Society, Miami, FL, USA

    Google Scholar 

  15. Omidian H, Park K (2008) Swelling agents and devices in oral drug delivery. J Drug Deliv Sci Technol 18(2):83–93

    CAS  Google Scholar 

  16. Abd El-Mohdy HL, Hegazy ESA, Abd El-Rehim HA (2006) Characterization of starch/acrylic acid super-absorbent hydrogels prepared by ionizing radiation. J Macromol Sci Part A-Pure Appl Chem 43(7):1051–1063

    Article  CAS  Google Scholar 

  17. Tang C et al (2005) New superporous hydrogels composites based on aqueous Carbopol((R)) solution (SPHCcs): synthesis, characterization and in vitro bioadhesive force studies. Eur Polym J 41(3):557–562

    Article  CAS  Google Scholar 

  18. Gemeinhart RA, Park H, Park K (2000) Pore structure of superporous hydrogels. Polym Adv Technol 11(8–12):617–625

    Article  CAS  Google Scholar 

  19. Partap S et al (2007) Preparation and characterization of controlled porosity alginate hydrogels made via a simultaneous micelle templating and internal gelation process. J Mater Sci 42(10):3502–3507

    Article  CAS  Google Scholar 

  20. Abdurrahmanoglu S, Can V, Okay O (2008) Equilibrium swelling behavior and elastic properties of polymer-clay nanocomposite hydrogels. J Appl Polym Sci 109(6):3714–3724

    Article  CAS  Google Scholar 

  21. Bo J (1992) Study on PVA hydrogels cross-linked by epichlorohydrin. J Appl Polym Sci 46(5):783–786

    Article  Google Scholar 

  22. Cauich-Rodriguez JV, Deb S, Smith R (1996) Characterization of hydrogel blends of poly(vinyl pyrrolidone) and poly(vinyl alcohol vinyl acetate). J Mater Sci Mater Med 7(5):269–272

    Article  CAS  Google Scholar 

  23. Cha WI et al (1996) Mechanical and wear properties of poly(vinyl alcohol) hydrogels. Macromol Symp 109:115–126

    Article  CAS  Google Scholar 

  24. Chen KS et al (2003) Surface grafting polymerization and crosslinking of thermosensitive NIPAAm hydrogels onto plasma pretreated substrates and drug delivery properties. Thermec’2003 426–434(Pts 1-5):3267–3271

    Google Scholar 

  25. Chen KS et al (2003) Preparation and characterization of hydroxyapatide powder/poly(acrylamide/itaconic acid) composite hydrogel. Thermec’2003 426–432(Pts 1–5):2101–2106

    Google Scholar 

  26. Darwis D et al (2002) Characterization of poly(vinyl alcohol) hydrogel for prosthetic intervertebral disc nucleus. Radiat Phys Chem 63(3–6):539–542

    Article  CAS  Google Scholar 

  27. Dogan AK, Gumusderelioglu M, Aksoz E (2005) Controlled release of EGF and bFGF from dextran hydrogels in vitro and in vivo. J Biomed Mater Res Part B-Appl Biomater 74B(1):504–510

    Article  CAS  Google Scholar 

  28. dos Santos JFR et al (2008) Poly(hydroxyethyl methacrylate-co-methacrylated-beta-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties. Acta Biomater 4(3):745–755

    Article  CAS  Google Scholar 

  29. El-Din HMN, Abd Alla SG, El-Naggar AWM (2007) Swelling, thermal and mechanical properties of poly(vinylalcohol)/sodium alginate hydrogels synthesized by electron beam irradiation. J Macromol Sci Part A-Pure Appl Chem 44(3):291–297

    Article  CAS  Google Scholar 

  30. Eschbach FO, Huang SJ (1994) Hydrophilic–hydrophobic interpenetrating polymer networks and semiinterpenetrating polymer networks. Interpenetrating Polym Netw 239:205–219

    Article  CAS  Google Scholar 

  31. Favaro SL et al (2008) Superabsorbent hydrogel composed of covalently crosslinked gum arabic with fast swelling dynamics. J Appl Polym Sci 107(3):1500–1506

    Article  CAS  Google Scholar 

  32. Gayet JC, He P, Fortier G (1998) Bioartificial polymeric material: poly(ethylene glycol) crosslinked with albumin II: mechanical and thermal properties. J Bioact Compat Polym 13(3):179–197

    CAS  Google Scholar 

  33. Griffin JM, Robb I, Bismarck A (2007) Preparation and characterization of surfactant-free stimuli-sensitive microgel dispersions. J Appl Polym Sci 104(3):1912–1919

    Article  CAS  Google Scholar 

  34. Hess C et al (2007) Influence of soluble polymer residues in crosslinked carboxymethyl starch on some physical properties of its hydrogels. Starch-Starke 59:423–429

    Article  CAS  Google Scholar 

  35. Hron P et al (1997) Silicone rubber hydrogel composites as polymeric biomaterials: 9. Composites containing powdery polyacrylamide hydrogel. Biomaterials 18(15):1069–1073

    Article  CAS  Google Scholar 

  36. Khalid MN et al (1999) Swelling properties and mechanical characterization of a semi-interpenetrating chitosan/polyethylene oxide network – comparison with a chitosan reference gel. STP Pharma Sci 9(4):359–364

    CAS  Google Scholar 

  37. Kim JK et al (2007) Preparation and properties of collagen/modified hyaluronic acid hydrogel for biomedical application. J Nanosci Nanotechnol 7(11):3852–3856

    Article  CAS  Google Scholar 

  38. Kim JW, Suh KD (1998) Amphiphilic urethane acrylate hydrogels having heterophasic gel structure: swelling behaviors and mechanical properties. Colloid Polym Sci 276(4):342–348

    Article  CAS  Google Scholar 

  39. Lakouraj MM, Tajbakhsh M, Mokhtary M (2005) Synthesis and swelling characterization of cross-linked PVP/PVA hydrogels. Iran Polym J 14(12):1022–1030

    CAS  Google Scholar 

  40. Lee JW et al (1999) Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). J Appl Polym Sci 73(1):113–120

    Article  CAS  Google Scholar 

  41. Li X et al (2008) The swelling behaviors and network parameters of cationic starch-g-acrylic acid/poly(dimethyldiallylammonium chloride) semi-interpenetrating polymer networks hydrogels. J Appl Polym Sci 110(3):1828–1836

    Article  CAS  Google Scholar 

  42. Ling K et al (2008) Effects of substitution degree of photoreactive groups on the properties of UV-fabricated chitosan scaffold. J Biomed Mater Res Part A 87A(1):52–61

    Article  CAS  Google Scholar 

  43. Lionetto F, Sannino A, Maffezzoli A (2005) Ultrasonic monitoring of the network formation in superabsorbent cellulose based hydrogels. Polymer 46(6):1796–1803

    Article  CAS  Google Scholar 

  44. Lopergolo LC, Lugao AB, Catalaini LH (2002) Development of a poly(N-vinyl-2-pyrrolidone)/poly (ethylene glycol) hydrogel membrane reinforced with methyl methacrylate-grafted polypropylene fibers for possible use as wound dressing. J Appl Polym Sci 86(3):662–666

    Article  CAS  Google Scholar 

  45. Lopes CMA, Felisberti MI (2003) Mechanical behaviour and biocompatibility of poly(1-vinyl-2-pyrrolidone)–gelatin IPN hydrogels. Biomaterials 24(7):1279–1284

    Article  CAS  Google Scholar 

  46. Ma JH et al (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43(6):2221–2228

    Article  CAS  Google Scholar 

  47. Sangeetha K, Abraham TE (2008) Investigation on the development of sturdy bioactive hydrogel beads. J Appl Polym Sci 107(5):2899–2908

    Article  CAS  Google Scholar 

  48. Xiong LJ et al (2008) Polymer-laponite nanocomposite hydrogels with super-elongation. Prog Chem 20(4):464–468

    CAS  Google Scholar 

  49. Xu K et al (2007) Study on the synthesis and performance of hydrogels with ionic monomers and montmorillonite. Appl Clay Sci 38(1–2):139–145

    Article  CAS  Google Scholar 

  50. Starodoubtsev SG, Ryabova AA, Dembo AT, Dembo KA, Aliev II, Wasserman AM, Khokhlov AR (2002) Composite gels of polyacrylamide with incorporated bentonite. Interaction with cationic surfactants, ESR and SAXS study. Macromolecules 35(16):6362–6369

    Article  CAS  Google Scholar 

  51. Myung D et al (2007) Biomimetic strain hardening in interpenetrating polymer network hydrogels. Polymer 48:5376–5387

    Article  CAS  Google Scholar 

  52. Myung D et al (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19(6):647–657

    Article  CAS  Google Scholar 

  53. Nakayama A et al (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14(11):1124–1128

    Article  CAS  Google Scholar 

  54. Ravi N et al (2002) Characterization of the network properties of poly(ethylene glycol)–acrylate hydrogels prepared by variations in the ethanol-water solvent composition during crosslinking copolymerization. J Polym Sci Part B-Polym Phys 40(23):2677–2684

    Article  CAS  Google Scholar 

  55. Relleve L et al (1999) Radiation-modified hydrogel based on poly(N-vinyl-2-pyrrolidone) and carrageenan. Angew Makromol Chem 273:63–68

    Article  CAS  Google Scholar 

  56. Risbud MV, Bhat SV (2001) Properties of poly(vinyl pyrrolidone)/beta-chitosan hydrogel membranes and their biocompatibility evaluation by haemorheological method. J Mater Sci Mater Med 12(1):75–79

    Article  CAS  Google Scholar 

  57. Shin HS et al (1998) Synthesis and properties of polyacrylamide–gelatin interpenetrating polymer networks. Polym-Korea 22(5):683–690

    CAS  Google Scholar 

  58. Solari M (1994) Evaluation of the mechanical-properties of a hydrogel fiber in the development of a polymeric actuator. J Intell Mater Syst Struct 5(3):295–304

    Article  CAS  Google Scholar 

  59. Tang JC et al (2008) Mechanical property and pH sensitivity of chitosan-carbon nanotube/chitosan semi-interpenetrating hydrogel. Acta Chim Sin 66(5):541–544

    CAS  Google Scholar 

  60. Tang YF et al (2007) Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr Polym 67(4):491–499

    Article  CAS  Google Scholar 

  61. Trieu H, Qutubuddin S (1995) Poly(vinyl alcohol) hydrogels: 2. Effects of processing parameters on structure and properties. Polymer 36(13):2531–2539

    Article  CAS  Google Scholar 

  62. Vernengo J et al (2008) Evaluation of novel injectable hydrogels for nucleus pulposus replacement. J Biomed Mater Res Part B-Appl Biomater 84B(1):64–69

    Article  CAS  Google Scholar 

  63. Wach RA et al (2003) Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH. Radiat Phys Chem 68(5):771–779

    Article  CAS  Google Scholar 

  64. Xu FL et al (2008) Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe: characterization and evaluation in vitro. J Biomater Sci Polym Ed 19(4):431–439

    Article  CAS  Google Scholar 

  65. Xu SM, Zhang SF, Yang JZ (2008) An amphoteric semi-IPN nanocomposite hydrogels based on intercalation of cationic polyacrylamide into bentonite. Materials Lett 62(24):3999–4002

    Article  CAS  Google Scholar 

  66. Zhao L et al (2003) Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives. Carbohydr Polym 51(2):169–175

    Article  CAS  Google Scholar 

  67. Sontjens SHM et al (2006) Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules 7(1):310–316

    Article  CAS  Google Scholar 

  68. Trabbic-Carlson K, Setton LA, Chilkoti A (2003) Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides. Biomacromolecules 4(3):572–580

    Article  CAS  Google Scholar 

  69. Zhang CH, Zhang N, Wen XJ (2007) Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels. J Biomed Mater Res Part A 82A(3):637–650

    Article  CAS  Google Scholar 

  70. Wu MH et al (1999) Preparation of thermosensitive hydrogel (PP-g-NIPAAm) with one-off switching for controlled release of drugs. Radiat Phys Chem 56(3):341–346

    Article  Google Scholar 

  71. Vakkalanka SK, Brazel CS, Peppas NA (1996) Temperature- and pH-sensitive terpolymers for modulated delivery of streptokinase. J Biomater Sci Polym Ed 8(2):119–129

    Article  CAS  Google Scholar 

  72. Omidian H, Rocca JG, Park K (2006) Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate. Macromol Biosci 6(9):703–710

    Article  CAS  Google Scholar 

  73. Omidian H et al (2005) Hydrogels having enhanced elasticity and mechanical strength properties. US Patent 6,960,617, Purdue Research Foundation, United States

    Google Scholar 

  74. Park K, Kim DJ (2006) Swelling and mechanical properties of glycol chitosan/poly (vinyl alcohol) IPN-type superporous hydrogels. J Biomed Mater Res Part A 78A(4):662–667

    Article  CAS  Google Scholar 

  75. Kim DJ, Seo K, Park K (2004) Polymer composition and acidification effects on the swelling and mechanical propertie of poly (acrylamide-co-acrylic acid) superporous hydrogels. J Biomater Sci Polym Ed 15(2):189–199

    Article  CAS  Google Scholar 

  76. Baker JP et al (1994) Effect of initial total monomer concentration on the swelling behavior of cationic acrylamide-based hydrogels. Macromolecules 27(6):1446–1454

    Article  CAS  Google Scholar 

  77. Ding FC, Hsu SH, Chiang WY (2008) Synthesis of a new photoreactive gelatin with BTDA and HEMA derivatives. J Appl Polym Sci 109(1):589–596

    Article  CAS  Google Scholar 

  78. Foroutan H, Khodabakhsh M, Rabbani M (2007) Investigation of synthesis of PVP hydrogel by irradiation. Iran J Radiat Res 5(3):131–136

    Google Scholar 

  79. Gottlieb R, Schmidt T, Arndt KF (2005) Synthesis of temperature-sensitive hydrogel blends by high-energy irradiation. Nucl Instrum Methods Phys Res 236:371–376

    Article  CAS  Google Scholar 

  80. Hilmy N, Darwis D, Hardiningsih L (1993) Poly(N-vinylpyrrolidone) hydrogels: 2. hydrogel composites as wound dressing for tropical environment. Radiat Phys Chem 42(4-6):911–914

    Article  CAS  Google Scholar 

  81. Nagura M, Nishimura H, Ohkoshi Y (1991) Structure of the highly elastic and high water-content hydrogels obtained from poly(vinyl alcohol) poly(sodium l-glutamate) water-system. Kobunshi Ronbunshu 48(8):517–523

    Article  CAS  Google Scholar 

  82. Yang XJ et al (1997) Swelling behaviour and elastic properties of gelatin gels. Polym Int 44(4):448–452

    Article  CAS  Google Scholar 

  83. Xue W, Champ S, Huglin MB (2001) Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer 42(8):3665–3669

    Article  CAS  Google Scholar 

  84. Xue W, Huglin MB, Liao B (2007) Network and thermodynamic properties of hydrogels of poly[1-(3-sulfopropyl)-2-vinyl-pyridinium-betaine]. Eur Polym J 43:4355–4370

    Article  CAS  Google Scholar 

  85. Abd El-Rehim HA, Hegazy ESA, Abd El-Mohdy HL (2004) Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. J Appl Polym Sci 93(3):1360–1371

    Article  CAS  Google Scholar 

  86. Abd El-Rehim HA, Hegazy ESA, Diaa DA (2006) Characterization of super-absorbent material based on carboxymethylcellulose sodium salt prepared by electron beam irradiation. J Macromol Sci-Pure Appl Chem A43(1):101–113

    Google Scholar 

  87. Bajpai SK, Bajpai M, Sharma L (2007) Inverse suspension polymerization of poly(methacrylic acid-co-partially neutralized acrylic acid) superabsorbent hydrogels: synthesis and water uptake behavior. Des Monomer Polym 10(2):181–192

    Article  CAS  Google Scholar 

  88. Chaterji S, Kwon IK, Park K (2007) Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 32:1083–1122

    Article  CAS  Google Scholar 

  89. Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44(1):53–62

    Article  CAS  Google Scholar 

  90. Chen J, Park K (1999) Superporous hydrogels: fast responsive hydrogel systems. J Macromol Sci-Pure Appl Chem A36(7–8):917–930

    CAS  Google Scholar 

  91. Chen J, Park K (2000) Synthesis and characterization of superporous hydrogel composites. J Control Release 65(1–2):73–82

    Article  CAS  Google Scholar 

  92. Cheng SX, Zhang JT, Zhuo RX (2003) Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties. J Biomed Mater Res Part A 67A(1):96–103

    Article  CAS  Google Scholar 

  93. Demirtas TT, Karakecili AG, Gumusderelioglu M (2008) Hydroxyapatite containing superporous hydrogel composites: synthesis and in-vitro characterization. J Mater Sci Mater Med 19(2):729–735

    Article  CAS  Google Scholar 

  94. Dorkoosh FA et al (2002) Evaluation of superporous hydrogel (SPH) and SPH composite in porcine intestine ex-vivo: assessment of drug transport, morphology effect, and mechanical fixation to intestinal wall. Eur J Pharm Biopharm 53(2):161–166

    Article  CAS  Google Scholar 

  95. Dorkoosh FA et al (2004) Transport of octreotide and evaluation of mechanism of opening the paracellular tight junctions using superporous hydrogels polymers in Caco-2 cell monolayers. J Pharm Sci 93(3):743–752

    Article  CAS  Google Scholar 

  96. Dorkoosh FA et al (2000) Preparation and NMR characterization of superporous hydrogel (SPH) and SPH composites. Polymer 41(23):8213–8220

    Article  CAS  Google Scholar 

  97. Dorkoosh FA et al (2002) Effects of superporous hydrogels on paracellular drug permeability and cytotoxicity studies in Caco-2 cell monolayers. Int J Pharm 241(1):35–45

    Article  CAS  Google Scholar 

  98. Dorkoosh FA et al (2004) Feasibility study on the retention of superporous hydrogel composite polymer in the intestinal tract of man using scintigraphy. J Control Release 99(2):199–206

    Article  CAS  Google Scholar 

  99. Dorkoosh FA et al (2002) Peroral delivery systems based on superporous hydrogel polymers: release characteristics for the peptide drugs buserelin, octreotide and insulin. Eur J Pharm Sci 15(5):433–439

    Article  CAS  Google Scholar 

  100. Dorkoosh FA et al (2001) Development and characterization of a novel peroral peptide drug delivery system. J Control Release 71(3):307–318

    Article  CAS  Google Scholar 

  101. Dorkoosh FA et al (2002) Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers. Int J Pharm 247(1–2):47–55

    Article  CAS  Google Scholar 

  102. Dorkoosh FA et al (2002) Peroral absorption of octreotide in pigs formulated in delivery systems on the basis of superporous hydrogel polymers. Pharm Res 19(10):1532–1536

    Article  CAS  Google Scholar 

  103. Gemeinhart RA et al (2000) pH-sensitivity of fast responsive superporous hydrogels. J Biomater Sci Polym Ed 11(12):1371–1380

    Article  CAS  Google Scholar 

  104. Gemeinhart RA, Park H, Park K (2001) Effect of compression on fast swelling of poly(acrylamide-co-acrylic acid) superporous hydrogels. J Biomed Mater Res 55(1):54–62

    Article  CAS  Google Scholar 

  105. Horak D et al (2008) Superporous poly(2-hydroxyethyl methacrylate) based scaffolds: preparation and characterization. Polymer 49(8):2046–2054

    Article  CAS  Google Scholar 

  106. Kabiri K et al (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J 39(7):1341–1348

    Article  CAS  Google Scholar 

  107. Kabiri K, Omidian H, Zohuriaan-Mehr MJ (2003) Novel approach to highly porous superabsorbent hydrogels: synergistic effect of porogens on porosity and swelling rate. Polym Int 52(7):1158–1164

    Article  CAS  Google Scholar 

  108. Kabiri K, Zohuriaan-Mehr MJ (2003) Superabsorbent hydrogel composites. Polym Adv Technol 14(6):438–444

    Article  CAS  Google Scholar 

  109. Kabiri K, Zohuriaan-Mehr MJ (2004) Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol Mater Eng 289(7):653–661

    Article  CAS  Google Scholar 

  110. Kaneko T, Asoh TA, Akashi M (2005) Ultrarapid molecular release from poly(N-isopropylacrylamide) hydrogels perforated using silica nanoparticle networks. Macromol Chem Phys 206(5):566–574

    Article  CAS  Google Scholar 

  111. Kim JH et al (2002) Rapid temperature/pH response of porous alginate-g-poly(N-isopropylacrylamide) hydrogels. Polymer 43(26):7549–7558

    Article  CAS  Google Scholar 

  112. Lee WF, Yeh YC (2006) Effect of porosigen and hydrophobic monomer on the fast swelling–deswelling behaviors for the porous thermoreversible copolymeric hydrogels. J Appl Polym Sci 100(4):3152–3160

    Article  CAS  Google Scholar 

  113. Lopez-Ureta L et al (2008) Synthesis and characterization of acrylarnide/acrylic acid hydrogels crosslinked using a novel diacrylate of glycerol to produce multistructured materials. J Polym Sci Part A-Polym Chem 46(8):2667–2679

    Article  CAS  Google Scholar 

  114. Mohan YM, Murthy PSK, Raju KM (2006) Preparation and swelling behavior of macroporous poly(acrylamide-co-sodium methacrylate) superabsorbent hydrogels. J Appl Polym Sci 101(5):3202–3214

    Article  CAS  Google Scholar 

  115. Omidian H, Park K (2002) Experimental design for the synthesis of polyacrylamide superporous hydrogels. J Bioact Compat Polym 17(6):433–450

    Article  CAS  Google Scholar 

  116. Omidian H, Park K, Rocca JG (2007) Recent developments in superporous hydrogels. J Pharm Pharmacol 59(3):317–327

    Article  CAS  Google Scholar 

  117. Park H, Park K, Kim D (2006) Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application. J Biomed Mater Res Part A 76A(1):144–150

    Article  CAS  Google Scholar 

  118. Polnok A et al (2004) In vitro evaluation of intestinal absorption of desmopressin using drug-delivery systems based on superporous hydrogels. Int J Pharm 269(2):303–310

    Article  CAS  Google Scholar 

  119. Sannino A et al (2006) Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application. J Biomed Mater Res Part A 79A(2):229–236

    Article  CAS  Google Scholar 

  120. Serizawa T et al (2002) Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment. J Polym Sci Part A-Polym Chem 40(23):4228–4235

    Article  CAS  Google Scholar 

  121. Spiller KL et al (2008) Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties. Acta Biomater 4(1):17–25

    Article  CAS  Google Scholar 

  122. Tang C et al (2007) Swelling behavior and biocompatibility of carbopol-containing superporous hydrogel composites. J Appl Polym Sci 104(5):2785–2791

    Article  CAS  Google Scholar 

  123. Tang QW et al (2008) A high mechanical strength hydrogel from polyacrylamide/polyacrylamide with interpenetrating network structure by two-steps synthesis method. E-Polymers 21:1–6

    Google Scholar 

  124. Tolga Demirtas T, Karakecili AG, Gumusderelioglu M (2008) Hydroxyapatite containing superporous hydrogel composites: synthesis and in-vitro characterization. J Mater Sci Mater Med 19(2):729–735

    Article  CAS  Google Scholar 

  125. Xiang YQ, Peng ZQ, Chen DJ (2006) A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Eur Polym J 42(9):2125–2132

    Article  CAS  Google Scholar 

  126. Yang SC et al (2004) Application of poly(acrylic acid) superporous hydrogel microparticles as a super-disintegrant in fast-disintegrating tablets. J Pharm Pharmacol 56(4):429–436

    Article  CAS  Google Scholar 

  127. Yang SC, Park K, Rocca JG (2004) Semi-interpenetrating polymer network superporous hydrogels based on poly(3-sulfopropyl acrylate, potassium salt) and poly(vinyl alcohol): synthesis and characterization. J Bioact Compat Polym 19(2):81–100

    Article  CAS  Google Scholar 

  128. Yin LC et al (2008) Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles. Int J Pharm 350(1–2):220–229

    Article  CAS  Google Scholar 

  129. Yin LC et al (2007) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28(6):1258–1266

    Article  CAS  Google Scholar 

  130. Yin LC et al (2008) Polymer–protein interaction, water retention, and biocompatibility of a stimuli-sensitive superporous hydrogel containing interpenetrating polymer networks. J Appl Polym Sci 108(2):1238–1248

    Article  CAS  Google Scholar 

  131. Yin LC et al (2007) Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network-super-porous hydrogel containing sodium alginate. Polym Int 56:1563–1571

    Article  CAS  Google Scholar 

  132. Gavrilas C, Omidian H, Rocca JG (2005) Dynamic mechanical properties of superporous hydrogels. In 8th US-Japan symposium on drug delivery systems, Hawaii, USA

    Google Scholar 

  133. Li G, Omidian H, Rocca JG (2004) Anisotropic properties of superporous hydrogel hybrids intended for gastric retention. American Association of Pharmaceutical Scientists, Baltimore, USA

    Google Scholar 

  134. Li G, Omidian H, Rocca JG (2005) Acrylate–chitosan superporous hydrogel hybrids. The 32nd annual meeting of the Controlled Release Society, Miami, USA

    Google Scholar 

  135. Townsend R, Rocca JG, Omidian H (2005) Safety and toxicity studies of a novel gastroretentive platform administered orally in a swine emesis model. The 32nd annual meeting of the Controlled Release Society, Miami, USA

    Google Scholar 

  136. Han W, Omidian H, Rocca JG (2004) Evaluation of gastroretentive superporous hydrogel platforms using swine model. The 31st annual meeting of the Controlled Release Society, Honolulu, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Omidian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Omidian, H., Park, K. (2010). Engineered High Swelling Hydrogels. In: Ottenbrite, R., Park, K., Okano, T. (eds) Biomedical Applications of Hydrogels Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5919-5_19

Download citation

Publish with us

Policies and ethics