Skip to main content

Advertisement

Log in

Preparation and characterisation of controlled porosity alginate hydrogels made via a simultaneous micelle templating and internal gelation process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Controlled porosity alginate hydrogel monoliths were synthesised by simultaneous micelle templating (MT) and an internal gelation reaction. In water, the self assembling surfactant, cetyltrimethylammonium bromide (CTAB) formed non-spherical micelles that were used as a template for pore formation. The porous microstructure was assessed by mercury intrusion porosimetry (MIP), helium pycnometry, X-ray microtomography (XMT) and scanning electron microscopy (SEM), respectively. The MT hydrogels displayed relatively monodisperse pore size distributions (with pore sizes ranging from 32.5 μm to 164.0 μm), high total pore volumes (4.5–20.3 cm3/g) and high degrees of porosity (83–97%). Some control over pore size distributions was achieved by varying the surfactant concentration; higher surfactant concentrations, led to smaller pores with lower total pore volumes. Uniaxial compression testing revealed that hydrogels made via MT are stable in cell culture media for 28 days. Fourier transform infrared (FTIR) spectroscopy data, suggested that all surfactant could be removed from the final product by washing with ethanol and water, making these hydrogels potentially suitable for tissue engineering (TE) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Drury JL, Mooney DJ (2003) Biomaterials 24:4337

    Article  CAS  Google Scholar 

  2. Hutmacher DW (2000) Biomaterials 21:2529

    Article  CAS  Google Scholar 

  3. Hollister SJ, Maddox RD, Taboas JM (2002) Biomaterials 23:4095

    Article  CAS  Google Scholar 

  4. Hoffman AS (2002) Adv Drug Deliv Rev 54:3

    Article  CAS  Google Scholar 

  5. Peters MC, Isenberg BC, Rowley JA, Mooney DJ (1998) J Biomater Sci Polym Ed 9:1267

    Article  CAS  Google Scholar 

  6. Langer R, Peppas NA (2003) Aiche J 49:2990

    Article  CAS  Google Scholar 

  7. Ju HK, Kim SY, Lee YM (2001) Polymer 42:6851

    Article  CAS  Google Scholar 

  8. Lee KY, Mooney DJ (2001) Chem Rev 101:1869

    Article  CAS  Google Scholar 

  9. Whang K, Thomas CH, Healy KE, Nuber G (1995) Polymer 36:837

    Article  CAS  Google Scholar 

  10. Zmora S, Glicklis R, Cohen S (2002) Biomaterials 23:4087

    Article  CAS  Google Scholar 

  11. Chen GP, Ushida T, Tateishi T (2001) Biomaterials 22:2563

    Article  CAS  Google Scholar 

  12. Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) J Control Release 64:91

    Article  CAS  Google Scholar 

  13. Mooney DJ, Baldwin DF, Suh NP, Vacanti LP, Langer R (1996) Biomaterials 17:1417

    Article  CAS  Google Scholar 

  14. Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ (2000) Biomaterials 21:1921

    Article  CAS  Google Scholar 

  15. Choi BY, Park HJ, Hwang SJ, Park JB (2002) Int J Pharm 239:81

    Article  CAS  Google Scholar 

  16. Kawanishi M, Ushida T, Kaneko T, Niwa H, Fukubayashi T, Nakamura K, Oda H, Tanaka S, Tateishi T (2004) Mater Sci Eng C 24:431

    Article  Google Scholar 

  17. Cameron NR (2005) Polymer 46:1439

    Article  CAS  Google Scholar 

  18. Busby W, Cameron NR, Jahoda CAB (2001) Biomacromolecules 2:154

    Article  CAS  Google Scholar 

  19. Butler R, Davies CM, Cooper AI (2001) Adv Mater 13:1459

    Article  CAS  Google Scholar 

  20. Butler R, Hopkinson I, Cooper AI (2003) J Am Chem Soc 125:14473

    Article  CAS  Google Scholar 

  21. Partap S, Darr JA, Jones JR, Rehman I (2006) Adv Mater 18:501

    Article  CAS  Google Scholar 

  22. Song WL, Li A, Xu XQ (2003) Ind Eng Chem Res 42:949

    Article  CAS  Google Scholar 

  23. Kim WJ, Yang SM (2000) J Colloid Interface Sci 232:225

    Article  CAS  Google Scholar 

  24. Ruckenstein E, Chao ZS (2001) Nano Lett 1:739

    Article  CAS  Google Scholar 

  25. Xu J, Luan ZH, He HY, Zhou WZ, Kevan L (1998) Chem Mater 10:3690

    Article  CAS  Google Scholar 

  26. Davis GR, Elliott JC (2003) J Phys IV France 104:131

    Article  Google Scholar 

  27. Kong HJ, Lee KY, Mooney DJ (2002) Polymer 43:6239

    Article  CAS  Google Scholar 

  28. Moresi M, Mancini M, Bruno M, Rancini R (2001) J Text Stud 32:375

    Article  Google Scholar 

  29. Mitchell JR (1980) J Text Stud 11:315

    Article  CAS  Google Scholar 

  30. Da Rocha PSR, Harrison KL, Johnston KP (1999) Langmuir 15:419

    Article  CAS  Google Scholar 

  31. Schubert BA, Kaler EW, Wagner NJ (2003) Langmuir 19:4079

    Article  CAS  Google Scholar 

  32. Vinson PK, Bellare JR, Davis HT, Miller WG, Scriven LE (1991) J Colloid Interface Sci 142:74

    Article  CAS  Google Scholar 

  33. Subramanian V, Ducker WA (2000) Langmuir 16:4447

    Article  CAS  Google Scholar 

  34. Kim WJ, Yang SM, Kim M (1997) J Colloid Interface Sci 194:108

    Article  CAS  Google Scholar 

  35. Cates ME, Candau SJ (1990) J Phys Condens Matter 2:6869

    Article  CAS  Google Scholar 

  36. Fourest E, Volesky B (1996) Environ Sci Technol 30:277

    Article  CAS  Google Scholar 

  37. Sartori C, Finch DS, Ralph B, Gilding K (1997) Polymer 38:43

    Article  CAS  Google Scholar 

  38. Kadokawa J, Saitou S, Shoda S (2005) Carbohydr Polym 60:253

    Article  CAS  Google Scholar 

  39. Wasikiewicz JM, Yoshii F, Nagasawa N, Wach RA, Mitomo H (2005) Radiat Phys Chem 73:287

    Article  CAS  Google Scholar 

  40. Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro-Claro PJA (2003) Biomol Eng 20:223

    Article  CAS  Google Scholar 

  41. Li HY, Tripp CP (2004) Langmuir 20:10526

    Article  CAS  Google Scholar 

  42. Li HY, Tripp CP (2004) J Phys Chem B 108:18318

    Article  CAS  Google Scholar 

  43. Ford C, Singh M, Lawson L, He JB, John V, Lu YF, Papadopoulos K, Mcpherson G, Bose A (2004) Colloids Surf B 39:143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following for technical assistance; Z. Luklinska, R. Whitenstall and M. Willis (EM unit) and V. Ford (CADCAM), J. Caulfield (Technical assistance) and Dr. M. Phillips (Experimental officer). N. Houston (Honeywill & Stein) is kindly thanked for supplying the sodium alginate. EPSRC is thanked for an Advanced Research Fellowship entitled “Next Generation Biomedical Materials using Supercritical Fluids” (JAD, grant no. GR/A11304/01), for a case award (SP) and funding (IR and IRC core grant, respectively), and for substantial funding for the Clean Materials Technology Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Darr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Partap, S., Muthutantri, A., Rehman, I.U. et al. Preparation and characterisation of controlled porosity alginate hydrogels made via a simultaneous micelle templating and internal gelation process. J Mater Sci 42, 3502–3507 (2007). https://doi.org/10.1007/s10853-007-1533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1533-x

Keywords

Navigation