Skip to main content

Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer’s Disease

  • Chapter
  • First Online:
Neurodegenerative Diseases

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 6))

Abstract

Alzheimer’s Disease (AD) is a disease of synaptic dysfunction that ultimately proceeds to neuronal death. There is a wealth of evidence that indicates the final common mediator of this neurotoxic process is the formation and actions on synaptotoxic b-amyloid (Aβ). The premise in this review is that synaptic dysfunction may also be an initiating factor in for AD and promote synaptotoxic Aβ formation. This latter hypothesis is consistent with the fact that the most common risk factors for AD, apolipoprotein E (ApoE) allele status, age, education, and fitness, encompass suboptimal synaptic function. Thus, the synaptic dysfunction in AD may be both cause and effect, and remediating synaptic dysfunction in AD may have acute effects on the symptoms present at the initiation of therapy and also slow disease progression. The cyclic nucleotide (cAMP and cGMP) signaling systems are intimately involved in the regulation of synaptic homeostasis. The phosphodiesterases (PDEs) are a superfamily of enzymes that critically regulate spatial and temporal aspects of cyclic nucleotide signaling through metabolic inactivation of cAMP and cGMP. Thus, targeting the PDEs to promote improved synaptic function, or ‘synaptic resilience’, may be an effective and facile approach to new symptomatic and disease modifying therapies for AD. There continues to be a significant drug discovery effort aimed at discovering PDE inhibitors to treat a variety of neuropsychiatric disorders. Here we review the current status of those efforts as they relate to potential new therapies for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gauthier S, Reisberg B, Zaudig M et al (2006) Mild cognitive impairment. Lancet 367:1262–1270

    Article  Google Scholar 

  2. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    Article  CAS  Google Scholar 

  3. Francis PT, Palmer AM, Snape M et al (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  CAS  Google Scholar 

  4. Reisberg B, Doody R, Stoffler A et al (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341

    Article  CAS  Google Scholar 

  5. Chartier-Harlin MC, Crawford F, Houlden H et al (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–846

    Article  CAS  Google Scholar 

  6. Murrell J, Farlow M, Ghetti B et al (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254:97–99

    Article  CAS  Google Scholar 

  7. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  Google Scholar 

  8. Roberts GW, Nash M, Ince PG et al (1993) On the origin of Alzheimer’s disease: a hypothesis. Neuroreport 4:7–9

    Article  CAS  Google Scholar 

  9. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  CAS  Google Scholar 

  10. Terry R, Masliah E, Salmon D et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  CAS  Google Scholar 

  11. Scheff S, Price D (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24:1029–1046

    Article  CAS  Google Scholar 

  12. Masliah E, Mallory M, Alford M et al (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56:127–129

    Article  CAS  Google Scholar 

  13. Masliah E, Mallory M, Alford M et al (1994) Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci Lett 174:67–72

    Article  CAS  Google Scholar 

  14. Mirra SS, Heyman A, McKeel D et al (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD): Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479

    Article  CAS  Google Scholar 

  15. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278

    Article  CAS  Google Scholar 

  16. Braak H, Alafuzo I, Arzberger T et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using parafin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  Google Scholar 

  17. Small DH, Mok SS, Bornstein JC (2001) Alzheimer’s disease and Aβ toxicity: from top to bottom. Nat Rev Neurosci 2:595–598

    Article  CAS  Google Scholar 

  18. Samir K-S, Jessie T, Van Bianca B et al (2006) Mean age-of-onset of familial Alzheimer disease caused by presenilin mutations correlates with both increased Aβ42 and decreased Aβ40. Hum Mutat 27:686–695

    Article  CAS  Google Scholar 

  19. Hardy J, Higgins G (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  Google Scholar 

  20. Rowe CC, Ng S, Ackermann U et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68:1718–1725

    Article  CAS  Google Scholar 

  21. Mufson E, Chen E-Y, Cochran E et al (1999) Entorhinal cortex β-amyloid load in individuals with mild cognitive impairment. Exp Neurol 158:469–490

    Article  CAS  Google Scholar 

  22. Hyman BT, Van Hoesen GW, Damasio AR et al (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Article  CAS  Google Scholar 

  23. Lue L-F, Kuo Y-M, Roher AE et al (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    Article  CAS  Google Scholar 

  24. Zheng H, Koo E (2006) The amyloid precursor protein: beyond amyloid. Mol Neurodegener 1:5

    Article  CAS  Google Scholar 

  25. Tampellini D, Rahman N, Gallo EF et al (2009) Synaptic activity reduces intraneuronal Abeta, promotes app transport to synapses, and protects against Abeta-related synaptic alterations. J Neurosci 29:9704–9713

    Article  CAS  Google Scholar 

  26. Cirrito J, Yamada K, Finn M et al (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48:913–922

    Article  CAS  Google Scholar 

  27. Calabrese B, Shaked G, Tabarean I et al (2007) Rapid, concurrent alterations in pre- and postsynaptic structure induced by naturally-secreted amyloid-beta protein. Mol Cell Neurosci 35:183–193

    Article  CAS  Google Scholar 

  28. Shrestha B, Vitolo O, Joshi P et al (2006) Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Mol Cell Neurosci 33:274–282

    Article  CAS  Google Scholar 

  29. Cleary JP, Walsh DM, Hofmeister JJ et al (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    Article  CAS  Google Scholar 

  30. Arancio O, Puzzo D, Privitera L et al (2008) Amyloid-beta peptide is a positive modulator of synaptic plasticity and memory. Alzheimers Dement 4:T196–T197

    Article  Google Scholar 

  31. Giuffrida ML, Caraci F, Pignataro B et al (2009) β-amyloid monomers are neuroprotective. J Neurosci 29:10582–10587

    Article  CAS  Google Scholar 

  32. Corder E, Saunders A, Strittmatter W et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  Google Scholar 

  33. Farrer L, Cupples L, Haines J et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. ApoE and Alzheimer disease meta analysis consortium. JAMA 278:1349–1356

    Article  CAS  Google Scholar 

  34. Corder EH, Saunders AM, Risch NJ et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184

    Article  CAS  Google Scholar 

  35. Deary IJ, Whiteman MC, Pattie A et al (2002) Ageing: cognitive change and the APOE epsilon 4 allele. Nature 418:932

    Article  CAS  Google Scholar 

  36. Filippini N, MacIntosh BJ, Hough MG et al (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci USA 106:7209–7214

    Article  CAS  Google Scholar 

  37. Reiman EM, Chen K, Alexander GE et al (2005) Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad Sci USA 102:8299–8302

    Article  CAS  Google Scholar 

  38. Busch RM, Lineweaver TT, Naugle RI et al (2007) Apoe-epsilon4 is associated with reduced memory in long-standing intractable temporal lobe epilepsy. Neurology 68:409–414

    Article  CAS  Google Scholar 

  39. Palop JJ, Chin J, Roberson ED et al (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55:697–711

    Article  CAS  Google Scholar 

  40. Ponomareva NV, Korovaitseva GI, Rogaev EI (2008) EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol Aging 29:819–827

    Article  CAS  Google Scholar 

  41. Ponomareva NV, Selesneva ND, Jarikov GA (2003) EEG alterations in subjects at high familial risk for Alzheimer’s disease. Neuropsychobiology 48:152–159

    Article  CAS  Google Scholar 

  42. Wang C, Wilson W, Moore S et al (2005) Human APOE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol Dis 18:390–398

    Article  CAS  Google Scholar 

  43. Francis S, Corbin J (1999) Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci 36:275–328

    Article  CAS  Google Scholar 

  44. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    CAS  Google Scholar 

  45. Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31:680–686

    Article  CAS  Google Scholar 

  46. Malenka RC, Bear MF (2004) LTP and Ltd: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  Google Scholar 

  47. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacol 33:18–41

    Article  Google Scholar 

  48. Kandel E (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  CAS  Google Scholar 

  49. Abel T, Nguyen P, Barad M et al (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88:615–626

    Article  CAS  Google Scholar 

  50. Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86:9574–9578

    Article  CAS  Google Scholar 

  51. Esteban J, Shi S, Wilson C et al (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 6:136–143

    Article  CAS  Google Scholar 

  52. Banke T, Bowie D, Lee H et al (2000) Control of GluR1 AMPA receptor function by cAMP dependent protein kinase. J Neurosci 20:89–102

    CAS  Google Scholar 

  53. Lysetskiy M, Földy C, Soltesz I (2005) Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus 15:691–696

    Article  Google Scholar 

  54. Weisskopf M, Castillo P, Zalutsky R et al (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265:1878–1882

    Article  CAS  Google Scholar 

  55. Nicoll R, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876

    Article  CAS  Google Scholar 

  56. Kemp A, Manahan-Vaughan D (2007) Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci 30:111–118

    Article  CAS  Google Scholar 

  57. Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19:437–462

    Article  CAS  Google Scholar 

  58. Lee H, Barbarosie M, Kameyama K et al (2000) Regulation of distinct ampa receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405:955–959

    Article  CAS  Google Scholar 

  59. Kleppisch T, Feil R (2009) Cgmp signalling in the mammalian brain: role in synaptic plasticity and behaviour. In: Schmidt H, Stasch J-P, Hofmann F (eds) CGMP: generators, effectors and therapeutic implications. Springer, Berlin, pp 549–579

    Chapter  Google Scholar 

  60. Hawkins R, Son H, Arancio O (1998) Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog Brain Res 118:155–172

    Article  CAS  Google Scholar 

  61. Arancio O, Kandel E, Hawkins R (1995) Activity-dependent long-term enhancement of transmitter release by presynaptic 3’, 5’-cyclic GMP in cultured hippocampal neurons. Nature 376:74–80

    Article  CAS  Google Scholar 

  62. Arancio O, Kiebler M, Lee C et al (1996) Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87:1025–1035

    Article  CAS  Google Scholar 

  63. Son H, Lu Y-F, Zhuo M et al (1998) The specific role of cGMP in hippocampal LTP. Learn Mem 5:231–245

    CAS  Google Scholar 

  64. Lu Y-F, Kandel ER, Hawkins RD (1999) Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 19:10250–10261

    CAS  Google Scholar 

  65. Haghikia A, Mergia E, Friebe A et al (2007) Long-term potentiation in the visual cortex requires both nitric oxide receptor guanylyl cyclases. J Neurosci 27:818–823

    Article  CAS  Google Scholar 

  66. Hopper RA, Garthwaite J (2006) Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. J Neurosci 26:11513–11521

    Article  CAS  Google Scholar 

  67. Zhuo M, Kandel E, Hawkins R (1994) Nitric oxide and cGMP can produce either synaptic depression or potentiation depending on the frequency of presynaptic stimulation in hippocampus. Neuroreport 5:1033–1036

    Article  CAS  Google Scholar 

  68. Reyes-Harde M, Potter BVL, Galione A et al (1999) Induction of hippocampal LTD requires nitric-oxide-stimulated PKG activity and ca2+ release from cyclic ADP-ribose-sensitive stores. J Neurophysiol 82:1569–1576

    CAS  Google Scholar 

  69. Wei J, Jin X, Cohen E et al (2002) cGMP-induced presynaptic depression and postsynaptic facilitation at glutamatergic synapses in visual cortex. Brain Res 927:42–54

    Article  CAS  Google Scholar 

  70. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  CAS  Google Scholar 

  71. Ke H, Wang H (2006) Structure, catalytic mechanism, and inhibitor selectivity of cyclic nucleotide phosphodiesterases. In: Beavo JA, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC, Boca Raton, FL

    Google Scholar 

  72. Scapin G, Patel SB, Chung C et al (2004) Crystal structure of human phosphodiesterase 3b: atomic basis for substrate and inhibitor specificity. Biochemistry 43:6091–6100

    Article  CAS  Google Scholar 

  73. Ke H, Wang H (2007) Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr Top Med Chem 7:391–403

    Article  CAS  Google Scholar 

  74. Wang H, Yan Z, Yang S et al (2008) Kinetic and structural studies of phosphodiesterase-8a and implication on the inhibitor selectivity. Biochemistry 47:12760–12768

    Article  CAS  Google Scholar 

  75. Verhoest PR, Chapin DS, Corman M et al (2009) Discovery of a novel class of phosphodiesterase 10a inhibitors and identification of clinical candidate 2-[4-(1-methyl-4-pyridin-4-yl-1 h-pyrazol-3-yl)-phenoxymethyl]-quinoline (pf-2545920) for the treatment of schizophrenia. J Med Chem 52:7946–7949

    Article  CAS  Google Scholar 

  76. Wang H, Liu Y, Hou J et al (2007) Structural insight into substrate specificity of phosphodiesterase 10. Proc Natl Acad Sci 104:5782–5787

    Article  CAS  Google Scholar 

  77. Zhang KYJ, Card GL, Suzuki Y et al (2004) A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell 15:279–286

    Article  CAS  Google Scholar 

  78. Liu S, Mansour MN, Dillman KS et al (2008) Structural basis for the catalytic mechanism of human phosphodiesterase 9. Proc Natl Acad Sci 105:13309–13314

    Article  CAS  Google Scholar 

  79. Zoraghi R, Corbin JD, Francis SH (2006) Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity. J Biol Chem 281:5553–5558

    Article  CAS  Google Scholar 

  80. Sandner P, Svenstrup N, Tinel H et al (2008) Phosphodiesterase 5 inhibitors and erectile dysfunction. Expert Opin Ther Pat 18:21–33

    Article  CAS  Google Scholar 

  81. Sung BJ, Hwang KY, Jeon YH et al (2003) Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature 425:98–102

    Article  CAS  Google Scholar 

  82. Smith FD, Scott JD (2006) Anchored cAMP signaling: onward and upward – a short history of compartmentalized cAMP signal transduction. Eur J Cell Biol 85:585–592

    Article  CAS  Google Scholar 

  83. Baillie G, Scott J, Houslay M (2005) Compartmentalisation of phosphodiesterases and protein kinase a: opposites attract. FEBS Lett 579:3264–3270

    Article  CAS  Google Scholar 

  84. Houslay MD, Adams DR (2003) PDE4 cAMP phosphodiesterasesmodular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 370:1–18

    Article  CAS  Google Scholar 

  85. Jin SLC, Lan L, Zoudilova M et al (2005) Specific role of phosphodiesterase 4b in lipopolysaccharide-induced signaling in mouse macrophages. J Immunol 175:1523–1531

    CAS  Google Scholar 

  86. Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5:660–670

    Article  CAS  Google Scholar 

  87. Rose G, Hopper A, De Vivo M et al (2005) Phosphodiesterase inhibitors for cognitive enhancement. Curr Pharm Des 11:3329–3334

    Article  CAS  Google Scholar 

  88. Barad M, Bourtchouladze R, Winder DG et al (1998) Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc Natl Acad Sci USA 95:15020–15025

    Article  CAS  Google Scholar 

  89. Reneerkens O, Rutten K, Steinbusch H et al (2009) Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacol 202:419–443

    Article  CAS  Google Scholar 

  90. Gong B, Vitolo O, Trinchese F et al (2004) Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 114:1624–1634

    CAS  Google Scholar 

  91. Cullen W, Suh Y, Anwyl R et al (1997) Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments. Neuroreport 8:3213–3217

    Article  CAS  Google Scholar 

  92. Itoh A (1999) Impairments of long-term potentiation in hippocampal slices of beta-amyloid infused rats. Eur J Pharmacol 382:167–175

    Article  CAS  Google Scholar 

  93. Vitolo O (2002) Amyloid beta-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci USA 99:13217–13221

    Article  CAS  Google Scholar 

  94. Giembycz MA (2009) Can the anti-inflammatory potential of PDE4 inhibitors be realized: guarded optimism or wishful thinking? Br J Pharmacol 155:228–290

    Article  CAS  Google Scholar 

  95. Sturton G, Fitzgerald M (2002) Phosphodiesterase 4 inhibitors for the treatment of COPD. Chest 121:192S–196S

    Article  CAS  Google Scholar 

  96. Rutten K, Basile JL, Prickaerts J et al (2008) Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology (Berl) 196:643–648

    Article  CAS  Google Scholar 

  97. Ramos BP, Birnbaum SG, Lindenmayer I et al (2003) Dysregulation of protein kinase a signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline. Neuron 40:835–845

    Article  CAS  Google Scholar 

  98. Cherry JA, Davis RL (1999) Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J Comp Neurol 407:287–301

    Article  CAS  Google Scholar 

  99. Rutten K, Misner D, Works M et al (2008) Enhanced long-term potentiation and impaired learning in phosphodiesterase 4d-knockout (PDE4d) mice. Eur J Neurosci 28:625–632

    Article  Google Scholar 

  100. Ahmed T, Frey J (2005) Phosphodiesterase 4b (PDE4b) and cAMP-level regulation within different tissue fractions of rat hippocampal slices during long-term potentiation in vitro. Brain Res 1041:212–222

    Article  CAS  Google Scholar 

  101. Millar JK, Pickard BS, Mackie S et al (2005) DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310:1187–1191

    Article  CAS  Google Scholar 

  102. Fatemi S, King D, Reutiman T et al (2008) PDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia. Schizophr Res 101:36–49

    Article  Google Scholar 

  103. Numata S, Ueno S, Iga J et al (2008) Positive association of the PDE4B (phosphodiesterase 4B) gene with schizophrenia in the japanese population. J Psychiatr Res 43:7–12

    Article  Google Scholar 

  104. Robichaud A, Stamatiou P, Jin S et al (2002) Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J Clin Invest 110:1045–1052

    CAS  Google Scholar 

  105. Chambers R, Abrams K, Castleberry T et al (2006) A new chemical tool for exploring the role of the PDE4D isozyme in leukocyte function. Bioorg Med Chem Lett 16:718–721

    Article  CAS  Google Scholar 

  106. Kranz M, Wall M, Evans B et al (2009) Identification of PDE4B over 4D subtype-selective inhibitors revealing an unprecedented binding mode. Bioorg Med Chem 17:5336–5341

    Article  CAS  Google Scholar 

  107. Naganuma K, Omura A, Maekawara N et al (2009) Discovery of selective PDE4B inhibitors. Bioorg Med Chem Lett 19:3174–3176

    Article  CAS  Google Scholar 

  108. Giembycz MA, Smith SJ (2006) Phosphodiesterase 7 (PDE7) as a therapeutic target. Drugs Future 31:207–229

    Article  CAS  Google Scholar 

  109. Michaeli T (2006) Pde7. In: Beavo JA, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC, Boca Raton, FL, pp 195–204

    Google Scholar 

  110. Han P, Sonati P, Rubin C et al (2006) Pde7a1, a camp-specific phosphodiesterase, inhibits camp-dependent protein kinase by a direct interaction with c. J Biol Chem 281:15050–15057

    Article  CAS  Google Scholar 

  111. Gil C, Campillo NE, Perez DI et al (2008) PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin Ther Pat 18:1127–1139

    Article  CAS  Google Scholar 

  112. Bergmann JE, Cutshall NS, Demopulos GA et al (2008) Use of PDE7 inhibitors for the treatment of movement disorders, US 20080260643

    Google Scholar 

  113. Vasta V (2006) cAMP-phosphodiesterase 8 family. In: Beavo JA, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC, Boca Raton, FL

    Google Scholar 

  114. Sandner P, Hutter J, Tinel H et al (2007) PDE5 inhibitors beyond erectile dysfunction. Int J Impot Res 19:533–543

    Article  CAS  Google Scholar 

  115. Prickaerts J, Sik A, van Staveren W et al (2004) Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int 45:915–928

    Article  CAS  Google Scholar 

  116. Rutten K, Prickaerts J, Hendrix M et al (2007) Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 558:107–112

    Article  CAS  Google Scholar 

  117. Devan B, Duffy K, Bowker J et al (2005) Phosphodiesterase type 5 (PDE5) inhibition and cognitive enhancement. Drugs Future 30:725

    Article  CAS  Google Scholar 

  118. Goff D, Cather C, Freudenreich O et al (2009) A placebo-controlled study of sildenafil effects on cognition in schizophrenia. Psychopharmacol 202:411–417

    Article  CAS  Google Scholar 

  119. Menniti F, Ren J, Coskran T et al (2009) PDE5A inhibitors improve functional recovery after stroke in rats: optimized dosing regimen and implications for mechanism. J Pharmacol Exp Ther 331:1–9

    Article  CAS  Google Scholar 

  120. Zhang L, Zhang RL, Wang Y et al (2005) Functional recovery in aged and young rats after embolic stroke: treatment with a phosphodiesterase type 5 inhibitor. Stroke 36:847–852

    Article  Google Scholar 

  121. Zhang L, Zhang Z, Zhang RL et al (2006) Tadalafil, a long-acting type 5 phosphodiesterase isoenzyme inhibitor, improves neurological functional recovery in a rat model of embolic stroke. Brain Res 1118:192–198

    Article  CAS  Google Scholar 

  122. Zhang R, Wang Y, Zhang L et al (2002) Sildenafil (viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke 33:2675–2680

    Article  CAS  Google Scholar 

  123. Puzzo D, Staniszewski A, Deng SX et al (2009) Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer’s disease mouse model. J Neurosci 29:8075–8086

    Article  CAS  Google Scholar 

  124. Van Staveren W, Steinbusch H, Markerink-Van Ittersum M et al (2003) Mrna expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol 467:566–580

    Article  CAS  Google Scholar 

  125. Kotera J, Fujishige K, Omori K (2000) Immunohistochemical localization of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in rat tissues. J Histochem Cytochem 48:685–694

    Article  CAS  Google Scholar 

  126. Reyes-Irisarri E, Markerink-Van Ittersum M, Mengod G et al (2007) Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer’s disease human brains. Eur J Neurosci 25:3332–3338

    Article  Google Scholar 

  127. Kruse LS, Sandholdt NTH, Gammeltoft S et al (2006) Phosphodiesterase 3 and 5 and cyclic nucleotide-gated ion channel expression in rat trigeminovascular system. Neurosci Lett 404:202–207

    Article  CAS  Google Scholar 

  128. Andreeva S, Dikkes P, Epstein P et al (2001) Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J Neurosci 21:9068–9076

    CAS  Google Scholar 

  129. Guipponi M, Scott HS, Kudoh J et al (1998) Identification and characterization of a novel cyclic nucleotide phosphodiesterase gene (PDE9A) that maps to 21q22.3: alternative splicing of mRNA transcripts, genomic structure and sequence. Hum Genet 103:386–392

    Article  CAS  Google Scholar 

  130. Rentero C, Monfort A, Puigdomenech P (2003) Identification and distribution of different mRNA variants produced by differential splicing in the human phosphodiesterase 9A gene. Biochem Biophys Res Commun 301:686–692

    Article  CAS  Google Scholar 

  131. Wang P, Wu P, Egan RW et al (2003) Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5). Differential tissue distribution and subcellular localization of PDE9A variants. Gene 314:15–27

    Article  CAS  Google Scholar 

  132. Fisher DA, Smith JF, Pillar JS et al (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem 273:15559–15564

    Article  CAS  Google Scholar 

  133. Soderling SH, Bayuga SJ, Beavo JA (1998) Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem 273:15553–15558

    Article  CAS  Google Scholar 

  134. Kruse LS, Moller M, Tibaek M et al (2009) PDE9A, PDE10A, and PDE11A expression in rat trigeminovascular pain signalling system. Brain Res 1281:25–34

    Article  CAS  Google Scholar 

  135. Wunder F, Tersteegen A, Rebmann A et al (2005) Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol Pharmacol 68:1775–1781

    CAS  Google Scholar 

  136. van der Staay F, Rutten K, Bärfacker L et al (2008) The novel selective PDE9 inhibitor bay 73-6691 improves learning and memory in rodents. Neuropharmacol 55:908–918

    Article  CAS  Google Scholar 

  137. Menniti FS, Kleiman R, Schmidt C (2008) PDE9A-mediated regulation of cGMP: impact on synaptic plasticity. Schizophr Res 102:38–39

    Article  Google Scholar 

  138. Schmidt CJ, Harms JF, Tingley FD et al (2009) PDE9A-mediated regulation of cGMP: developing a biomarker for a novel therapy for Alzheimer’s disease. Alzheimers Dement 5:P331

    Article  Google Scholar 

  139. Nicholas T, Evans R, Styren S et al (2009) Pf-04447943, a novel PDE9A inhibitor, increases cGMP levels in cerebrospinal fluid: translation from non-clinical species to healthy human volunteers. Alzheimers Dement 5:P330–P331

    Article  Google Scholar 

  140. Kubinyi H, Müller G (eds) (2004) Chemogenomics in drug discovery: a medicinal chemistry perspective. Wiley-VCH, Weinheim

    Google Scholar 

  141. Huai Q, Wang H, Zhang W et al (2004) Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding. Proc Natl Acad Sci USA 101:9624–9629

    Article  CAS  Google Scholar 

  142. Wang H, Ye M, Robinson H et al (2008) Conformational variations of both phosphodiesterase-5 and inhibitors provide the structural basis for the physiological effects of vardenafil and sildenafil. Mol Pharmacol 73:104–110

    Article  CAS  Google Scholar 

  143. Deninno MP, Andrews M, Bell AS et al (2009) The discovery of potent, selective, and orally bioavailable PDE9 inhibitors as potential hypoglycemic agents. Bioorg Med Chem Lett 19:2537–2541

    Article  CAS  Google Scholar 

  144. Stroop S, Beavo J (1991) Structure and function studies of the cGMP-stimulated phosphodiesterase. J Biol Chem 266:23802–23809

    CAS  Google Scholar 

  145. Rosman GJ, Martins TJ, Sonnenburg WK et al (1997) Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′, 5′-cyclic nucleotide phosphodiesterase. Gene 191:89–95

    Article  CAS  Google Scholar 

  146. Sonnenburg WK, Mullaney PJ, Beavo JA (1991) Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA. Identification and distribution of isozyme variants. J Biol Chem 266:17655–17661

    CAS  Google Scholar 

  147. Yang Q, Paskind M, Bolger G et al (1994) A novel cyclic GMP stimulated phosphodiesterase from rat brain. Biochem Biophys Res Commun 205:1850–1858

    Article  CAS  Google Scholar 

  148. Russwurm C, Zoidl G, Koesling D et al (2009) Dual acylation of PDE2A splice variant 3: targeting to synaptic membranes. J Biol Chem 284:25782–25790

    Article  CAS  Google Scholar 

  149. Noyama K, Maekawa S (2003) Localization of cyclic nucleotide phosphodiesterase 2 in the brain-derived triton-insoluble low-density fraction (raft). Neurosci Res 45:141–148

    Article  CAS  Google Scholar 

  150. Suvarna NU, O’Donnell JM (2002) Hydrolysis of N-methyl-d-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. J Pharmacol Exp Ther 302:249–256

    Article  CAS  Google Scholar 

  151. Sadhu K, Hensley K, Florio VA et al (1999) Differential expression of the cyclic GMP-stimulated phosphodiesterase PDE2A in human venous and capillary endothelial cells. J Histochem Cytochem 47:895–906

    Article  CAS  Google Scholar 

  152. Stephenson DT, Coskran TM, Wilhelms MB et al (2009) Immunohistochemical localization of PDE2A in multiple mammalian species. J Histochem Cytochem 57:933–949

    Article  CAS  Google Scholar 

  153. Boess F, Hendrix M, van der Staay F et al (2004) Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacol 47:1081–1092

    Article  CAS  Google Scholar 

  154. Domek-Lopacinska K, Strosznajder JB (2008) The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res 1216:68–77

    Article  CAS  Google Scholar 

  155. Bender A (2006) Calmodulin-stimulated cycli nucleotide phosphodiesterease. In: Beavo JA, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC, Boca Raton, FL, pp 35–54

    Google Scholar 

  156. Podzuweit T, Nennstiel P, Muller A (1995) Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell Signal 7:733–738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank S. Menniti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bales, K.R., Plath, N., Svenstrup, N., Menniti, F.S. (2010). Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer’s Disease. In: Dominguez, C. (eds) Neurodegenerative Diseases. Topics in Medicinal Chemistry, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2010_8

Download citation

Publish with us

Policies and ethics