Skip to main content

cGMP Signalling in the Mammalian Brain: Role in Synaptic Plasticity and Behaviour

  • Chapter
cGMP: Generators, Effectors and Therapeutic Implications

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

The second messenger cyclic guanosine 3′,5′-monophosphate (cGMP) plays a crucial role in the control of cardiovascular and gastrointestinal homeostastis, but its effects on neuronal functions are less established. This review summarizes recent biochemical and functional data on the role of the cGMP signalling pathway in the mammalian brain, with a focus on the regulation of synaptic plasticity, learning, and other complex behaviours. Expression profiling, along with pharmacological and genetic manipulations, indicates important functions of nitric oxide (NO)-sensitive soluble guanylyl cyclases (sGCs), cGMP-dependent protein kinases (cGKs), and cGMP-regulated phosphodiesterases (PDEs) as generators, effectors, and modulators of cGMP signals in the brain, respectively. In addition, neuronal cGMP signalling can be transmitted through cyclic nucleotide-gated (CNG) or hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. The canonical NO/sGC/cGMP/cGK pathway modulates long-term changes of synaptic activity in the hippocampus, amygdala, cerebellum, and other brain regions, and contributes to distinct forms of learning and memory, such as fear conditioning, motor adaptation, and object recognition. Behavioural studies indicate that cGMP signalling is also involved in anxiety, addiction, and the pathogenesis of depression and schizophrenia. At the molecular level, different cGK isoforms appear to mediate effects of cGMP on presynaptic transmitter release and postsynaptic functions. The cGKs have been suggested to modulate cytoskeletal organization, vesicle and AMPA receptor trafficking, and gene expression via phosphorylation of various substrates including VASP, RhoA, RGS2, hSERT, GluR1, G-substrate, and DARPP-32. These and other components of the cGMP signalling cascade may be attractive new targets for the treatment of cognitive impairment, drug abuse, and psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajima A, Ito M (1995) A unique role of protein phosphatases in cerebellar long-term depression. Neuroreport 6:297–300

    PubMed  CAS  Google Scholar 

  • Antonova I, Arancio O, Trillat AC, Wang HG, Zablow L, Udo H, Kandel ER, Hawkins RD (2001) Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation. Science 294:1547–1550

    PubMed  CAS  Google Scholar 

  • Apergis-Schoute AM, Debiec J, Doyere V, LeDoux JE, Schafe GE (2005) Auditory fear conditioning and long-term potentiation in the lateral amygdala require ERK/MAP kinase signaling in the auditory thalamus:a role for presynaptic plasticity in the fear system. J Neurosci 25:5730–5739

    PubMed  CAS  Google Scholar 

  • Arancio O, Kandel ER, Hawkins RD (1995) Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature 376:74–80

    PubMed  CAS  Google Scholar 

  • Arancio O, Kiebler M, Lee CJ, Lev-Ram V, Tsien RY, Kandel ER, Hawkins RD (1996) Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87:1025–1035

    PubMed  CAS  Google Scholar 

  • Arancio O, Antonova I, Gambaryan S, Lohmann SM, Wood JS, Lawrence DS, Hawkins RD (2001) Presynaptic role of cGMP-dependent protein kinase during long-lasting potentiation. J Neurosci 21:143–149

    PubMed  CAS  Google Scholar 

  • Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703

    PubMed  CAS  Google Scholar 

  • Barnstable CJ, Wei JY, Han MH (2004) Modulation of synaptic function by cGMP and cGMP-gated cation channels. Neurochem Int 45:875–884

    PubMed  CAS  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity:LTP and LTD. Curr Opin Neurobiol 4:389–399

    PubMed  CAS  Google Scholar 

  • Beavo JA, Brunton LL (2002) Cyclic nucleotide research - still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718

    PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE (2002) Influence of gene action across different time scales on behavior. Science 296:741–744

    PubMed  CAS  Google Scholar 

  • Biel M, Zong X, Ludwig A, Sautter A, Hofmann F (1999) Structure and function of cyclic nucleotide-gated channels. Rev Physiol Biochem Pharmacol 135:151–171

    PubMed  CAS  Google Scholar 

  • Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE (2001) Synaptic plasticity in the lateral amygdala:a cellular hypothesis of fear conditioning. Learn Mem 8:229–242

    PubMed  CAS  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  • Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland A, Koenig G (2004) Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 47:1081–1092

    PubMed  CAS  Google Scholar 

  • Boulton CL, Southam E, Garthwaite J (1995) Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanylyl cyclase. Neuroscience 69:699–703

    PubMed  CAS  Google Scholar 

  • Boxall AR, Garthwaite J (1996) Long-term depression in rat cerebellum requires both NO synthase and NO-sensitive guanylyl cyclase. Eur J Neurosci 8:2209–2212

    PubMed  CAS  Google Scholar 

  • Bradley J, Zhang Y, Bakin R, Lester HA, Ronnett GV, Zinn K (1997) Functional expression of the heteromeric “olfactory” cyclic nucleotide-gated channel in the hippocampus:a potential effector of synaptic plasticity in brain neurons. J Neurosci 17:1993–2005

    PubMed  CAS  Google Scholar 

  • Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40:361–379

    PubMed  CAS  Google Scholar 

  • Burette A, Zabel U, Weinberg RJ, Schmidt HH, Valtschanoff JG (2002) Synaptic localization of nitric oxide synthase and soluble guanylyl cyclase in the hippocampus. J Neurosci 22:8961–8970

    PubMed  CAS  Google Scholar 

  • Buys ES, Sips P, Vermeersch P, Raher MJ, Rogge E, Ichinose F, Dewerchin M, Bloch KD, Janssens S, Brouckaert P (2008) Gender-specific hypertension and responsiveness to nitric oxide in sGCalpha1 knockout mice. Cardiovasc Res 79:179–186

    PubMed  CAS  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system:neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    PubMed  CAS  Google Scholar 

  • Canellada A, Cano E, Sanchez-Ruiloba L, Zafra F, Redondo JM (2006) Calcium-dependent expression of TNF-alpha in neural cells is mediated by the calcineurin/NFAT pathway. Mol Cell Neurosci 31:692–701

    PubMed  CAS  Google Scholar 

  • Carey M, Lisberger S (2002) Embarrassed, but not depressed:eye opening lessons for cerebellar learning. Neuron 35:223–226

    PubMed  CAS  Google Scholar 

  • Chen A, Muzzio IA, Malleret G, Bartsch D, Verbitsky M, Pavlidis P, Yonan AL, Vronskaya S, Grody MB, Cepeda I, Gilliam TC, Kandel ER (2003) Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron 39:655–669

    PubMed  CAS  Google Scholar 

  • Chetkovich DM, Klann E, Sweatt JD (1993) Nitric oxide synthase-independent long-term potenti-ation in area CA1 of hippocampus. Neuroreport 4:919–922

    PubMed  CAS  Google Scholar 

  • Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM (2003) Enhancement of long-term potentiation by a potent nitric oxide-guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl)-1-benzyl-indazole. Mol Pharmacol 63:1322–1328

    PubMed  CAS  Google Scholar 

  • Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM (2005) Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1. Eur J Neurosci 21:1679–1688

    PubMed  Google Scholar 

  • Chung HJ, Steinberg JP, Huganir RL, Linden DJ (2003) Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–1755

    PubMed  CAS  Google Scholar 

  • Citri A, Malenka RC (2007) Synaptic plasticity:multiple forms, functions, and mechanisms. Neu-ropsychopharmacology 33(1):18–41

    Google Scholar 

  • Clementi E, Sciorati C, Riccio M, Miloso M, Meldolesi J, Nistico G (1995) Nitric oxide action on growth factor-elicited signals. Phosphoinositide hydrolysis and [Ca2+]i responses are negatively modulated via a cGMP-dependent protein kinase I pathway. J Biol Chem 270:22277–22282

    PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases:essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    PubMed  CAS  Google Scholar 

  • Dang MT, Yokoi F, Yin HH, Lovinger DM, Wang Y, Li Y (2006) Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc Natl Acad Sci USA 103:15254–15259

    PubMed  CAS  Google Scholar 

  • Dere E, Frisch C, De Souza Silva MA, Godecke A, Schrader J, Huston JP (2001) Unaltered radial maze performance and brain acetylcholine of the endothelial nitric oxide synthase knockout mouse. Neuroscience 107:561–570

    PubMed  CAS  Google Scholar 

  • Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8:101–113

    PubMed  CAS  Google Scholar 

  • de Vente J, Hopkins DA, Markerink-Van Ittersum M, Emson PC, Schmidt HH, Steinbusch HW (1998) Distribution of nitric oxide synthase and nitric oxide-receptive, cyclic GMP-producing structures in the rat brain. Neuroscience 87:207–241

    PubMed  Google Scholar 

  • de Vente J, Asan E, Gambaryan S, Markerink-van Ittersum M, Axer H, Gallatz K, Lohmann SM, Palkovits M (2001) Localization of cGMP-dependent protein kinase type II in rat brain. Neu- roscience 108:27–49

    Google Scholar 

  • DiCicco-Bloom E, Lelievre V, Zhou X, Rodriguez W, Tam J, Waschek JA (2004) Embryonic expression and multifunctional actions of the natriuretic peptides and receptors in the developing nervous system. Dev Biol 271:161–175

    PubMed  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  • Doreulee N, Brown RE, Yanovsky Y, Godecke A, Schrader J, Haas HL (2001) Defective hip-pocampal mossy fiber long-term potentiation in endothelial nitric oxide synthase knockout mice. Synapse 41:191–194

    PubMed  CAS  Google Scholar 

  • El-Husseini AE, Bladen C, Vincent SR (1995) Molecular characterization of a type II cyclic GMP-dependent protein kinase expressed in the rat brain. J Neurochem 64:2814–2817

    PubMed  CAS  Google Scholar 

  • El-Husseini AE, Williams J, Reiner PB, Pelech S, Vincent SR (1999) Localization of the cGMP-dependent protein kinases in relation to nitric oxide synthase in the brain. J Chem Neuroanat 17:45–55

    PubMed  CAS  Google Scholar 

  • Eliasson MJ, Blackshaw S, Schell MJ, Snyder SH (1997) Neuronal nitric oxide synthase alternatively spliced forms:prominent functional localizations in the brain. Proc Natl Acad Sci USA 94:3396–3401

    PubMed  CAS  Google Scholar 

  • Erceg S, Monfort P, Hernandez-Viadel M, Rodrigo R, Montoliu C, Felipo V (2005) Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology 41:299–306

    PubMed  CAS  Google Scholar 

  • Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, Stasch JP (2006) NO-independent stimulators and activators of soluble guanylate cyclase:discovery and therapeutic potential. Nat Rev Drug Discov 5:755–768

    PubMed  CAS  Google Scholar 

  • Feil R, Kemp-Harper B (2006) cGMP signalling:from bench to bedside. Conference on cGMP generators, effectors and therapeutic implications. EMBO Rep 7:149–153

    PubMed  CAS  Google Scholar 

  • Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560

    PubMed  CAS  Google Scholar 

  • Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, Barski JJ, Meyer M, Konnerth A, De Zeeuw CI, Hofmann F (2003) Impairment of LTD and cerebellar learning by Purkinje cell- specific ablation of cGMP-dependent protein kinase I. J Cell Biol 163:295–302

    PubMed  CAS  Google Scholar 

  • Feil R, Hofmann F, Kleppisch T (2005a) Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 16:23–41

    CAS  Google Scholar 

  • Feil S, Zimmermann P, Knorn A, Brummer S, Schlossmann J, Hofmann F, Feil R (2005b) Distribution of cGMP-dependent protein kinase type I and its isoforms in the mouse brain and retina. Neuroscience 135:863–868

    CAS  Google Scholar 

  • Feil R, Feil S, Franken P, Emmenegger Y, Tafti M, Weindl K, Holter S, Wurst W, Langmesser S, Albrecht U, Foller M, Lang F, Weber S, Hofmann F (2007) New mouse models for the analysis of cGMP signalling. BMC Pharmacol 7:S19

    Google Scholar 

  • Fiedler B, Lohmann SM, Smolenski A, Linnemuller S, Pieske B, Schroder F, Molkentin JD, Drexler H, Wollert KC (2002) Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP- dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci USA 99:11363–11368

    PubMed  CAS  Google Scholar 

  • Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB:a major mediator of neuronal neurotrophin responses. Neuron 19:1031–1047

    PubMed  CAS  Google Scholar 

  • Frey U, Krug M, Reymann KG, Matthies H (1988) Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 452:57–65

    PubMed  CAS  Google Scholar 

  • Friebe A, Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93:96–105

    PubMed  CAS  Google Scholar 

  • Friebe A, Mullershausen F, Smolenski A, Walter U, Schultz G, Koesling D (1998) YC-1 potentiates nitric oxide- and carbon monoxide-induced cyclic GMP effects in human platelets. Mol Pharmacol 54:962–967

    PubMed  CAS  Google Scholar 

  • Friebe A, Mergia E, Dangel O, Lange A, Koesling D (2007) Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci USA 104:7699–7704

    PubMed  CAS  Google Scholar 

  • Frisch C, Dere E, Silva MA, Godecke A, Schrader J, Huston JP (2000) Superior water maze performance and increase in fear-related behavior in the endothelial nitric oxide synthase- deficient mouse together with monoamine changes in cerebellum and ventral striatum. J Neu- rosci 20:6694–6700

    CAS  Google Scholar 

  • Fujiwara M, Sengupta P, McIntire SL (2002) Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron 36:1091–1102

    PubMed  CAS  Google Scholar 

  • Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38:447–460

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706

    PubMed  CAS  Google Scholar 

  • Garthwaite G, Bartus K, Malcolm D, Goodwin D, Kollb-Sielecka M, Dooldeniya C, Garthwaite J (2006) Signaling from blood vessels to CNS axons through nitric oxide. J Neurosci 26:7730–7740

    PubMed  CAS  Google Scholar 

  • Geiselhoringer A, Gaisa M, Hofmann F, Schlossmann J (2004) Distribution of IRAG and cGKI- isoforms in murine tissues. FEBS Lett 575:19–22

    PubMed  CAS  Google Scholar 

  • Gibb BJ, Garthwaite J (2001) Subunits of the nitric oxide receptor, soluble guanylyl cyclase, expressed in rat brain. Eur J Neurosci 13:539–544

    PubMed  CAS  Google Scholar 

  • Gonzalez Bosc LV, Wilkerson MK, Bradley KN, Eckman DM, Hill-Eubanks DC, Nelson MT (2004) Intraluminal pressure is a stimulus for NFATc3 nuclear accumulation:role of calcium, endothelium-derived nitric oxide, and cGMP-dependent protein kinase. J Biol Chem 279:10702–10709

    PubMed  CAS  Google Scholar 

  • Graef IA, Mermelstein PG, Stankunas K, Neilson JR, Deisseroth K, Tsien RW, Crabtree GR (1999) L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401:703–708

    PubMed  CAS  Google Scholar 

  • Graef IA, Wang F, Charron F, Chen L, Neilson J, Tessier-Lavigne M, Crabtree GR (2003) Neu- rotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113:657–670

    PubMed  CAS  Google Scholar 

  • Groth RD, Mermelstein PG (2003) Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription:a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression. J Neurosci 23:8125–8134

    PubMed  CAS  Google Scholar 

  • Groth RD, Coicou LG, Mermelstein PG, Seybold VS (2007) Neurotrophin activation of NFAT- dependent transcription contributes to the regulation of pro-nociceptive genes. J Neurochem 102:1162–1174

    PubMed  CAS  Google Scholar 

  • Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152

    PubMed  CAS  Google Scholar 

  • Haghikia A, Mergia E, Friebe A, Eysel UT, Koesling D, Mittmann T (2007) Long-term potentiation in the visual cortex requires both nitric oxide receptor guanylyl cyclases. J Neurosci 27:818–823

    PubMed  CAS  Google Scholar 

  • Haley JE, Wilcox GL, Chapman PF (1992) The role of nitric oxide in hippocampal long-term potentiation. Neuron 8:211–216

    PubMed  CAS  Google Scholar 

  • Hall KU, Collins SP, Gamm DM, Massa E, DePaoli-Roach AA, Uhler MD (1999) Phosphorylation-dependent inhibition of protein phosphatase-1 by G-substrate. A Purkinje cell substrate of the cyclic GMP-dependent protein kinase. J Biol Chem 274:3485–3495

    PubMed  CAS  Google Scholar 

  • Han J, Mark MD, Li X, Xie M, Waka S, Rettig J, Herlitze S (2006) RGS2 determines short-term synaptic plasticity in hippocampal neurons by regulating Gi/o-mediated inhibition of presynaptic Ca2+ channels. Neuron 51:575–586

    PubMed  CAS  Google Scholar 

  • Hartell NA (1994) cGMP acts within cerebellar Purkinje cells to produce long term depression via mechanisms involving PKC and PKG. Neuroreport 5:833–836

    Article  PubMed  CAS  Google Scholar 

  • Haul S, Godecke A, Schrader J, Haas HL, Luhmann HJ (1999) Impairment of neocortical long- term potentiation in mice deficient of endothelial nitric oxide synthase. J Neurophysiol 81:494–497

    PubMed  CAS  Google Scholar 

  • Hauser W, Knobeloch KP, Eigenthaler M, Gambaryan S, Krenn V, Geiger J, Glazova M, Rohde E, Horak I, Walter U, Zimmer M (1999) Megakaryocyte hyperplasia and enhanced agonist- induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc Natl Acad Sci USA 96:8120–8125

    PubMed  CAS  Google Scholar 

  • Hawkins RD, Son H, Arancio O (1998) Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog Brain Res 118:155–172

    PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organisation of behavior. A neurophsychological theory. Wiley, New York

    Google Scholar 

  • Henniger MS, Spanagel R, Wigger A, Landgraf R, Holter SM (2002) Alcohol self-administration in two rat lines selectively bred for extremes in anxiety-related behavior. Neuropsychopharma- cology 26:729–736

    CAS  Google Scholar 

  • Herman JP, Langub MC, Jr, Watson RE, Jr (1993) Localization of C-type natriuretic peptide mRNA in rat hypothalamus. Endocrinology 133:1903–1906

    PubMed  CAS  Google Scholar 

  • Hinds HL, Goussakov I, Nakazawa K, Tonegawa S, Bolshakov VY (2003) Essential function of alpha-calcium/calmodulin-dependent protein kinase II in neurotransmitter release at a gluta- matergic central synapse. Proc Natl Acad Sci USA 100:4275–4280

    PubMed  CAS  Google Scholar 

  • Ho AM, Jain J, Rao A, Hogan PG (1994) Expression of the transcription factor NFATp in a neuronal cell line and in the murine nervous system. J Biol Chem 269:28181–28186

    PubMed  CAS  Google Scholar 

  • Hofmann F, Sold G (1972) A protein kinase activity from rat cerebellum stimulated by guanosine-3′:5′-monophosphate. Biochem Biophys Res Commun 49:1100–1107

    PubMed  CAS  Google Scholar 

  • Hofmann F, Biel M, Feil R, Kleppisch T (2004) Mouse models of NO/natriuretic peptide/cGMP kinase signaling. In:Hein L, Offermanns S (eds) Handbook of Experimental Pharmacology, Vol. 159. Springer, Heidelberg, pp 95–130

    Google Scholar 

  • Hofmann F, Biel M, Kaupp UB (2005) International union of pharmacology. LI. Nomenclature and structure-function relationships of cyclic nucleotide-regulated channels. Pharmacol Rev 57:455–462

    PubMed  CAS  Google Scholar 

  • Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    PubMed  CAS  Google Scholar 

  • Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins:modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559

    PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    PubMed  CAS  Google Scholar 

  • Hotchkiss AK, Pyter LM, Gatien ML, Wen JC, Milman HA, Nelson RJ (2005) Aggressive behavior increases after termination of chronic sildenafil treatment in mice. Physiol Behav 83:683–688

    PubMed  CAS  Google Scholar 

  • Huang EP (1997) Synaptic plasticity:a role for nitric oxide in LTP. Curr Biol 7:R141–R143

    PubMed  CAS  Google Scholar 

  • Huang YY, Kandel ER (1998) Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21:169–178

    PubMed  CAS  Google Scholar 

  • Ingi T, Krumins AM, Chidiac P, Brothers GM, Chung S, Snow BE, Barnes CA, Lanahan AA, Siderovski DP, Ross EM, Gilman AG, Worley PF (1998) Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J Neurosci 18:7178–7188

    PubMed  CAS  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression:characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  • Ito M (2002) Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann N Y Acad Sci 978:273–288

    PubMed  Google Scholar 

  • Josselyn SA, Nguyen PV (2005) CREB, synapses and memory disorders:past progress and future challenges. Curr Drug Targets CNS Neurol Disord 4:481–497

    PubMed  CAS  Google Scholar 

  • Josselyn SA, Shi C, Carlezon WA, Jr, Neve RL, Nestler EJ, Davis M (2001) Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci 21:2404–2412

    PubMed  CAS  Google Scholar 

  • Josselyn SA, Kida S, Silva AJ (2004) Inducible repression of CREB function disrupts amygdala- dependent memory. Neurobiol Learn Mem 82:159–163

    PubMed  CAS  Google Scholar 

  • Jouvert P, Revel MO, Lazaris A, Aunis D, Langley K, Zwiller J (2004) Activation of the cGMP pathway in dopaminergic structures reduces cocaine-induced EGR-1 expression and locomotor activity. J Neurosci 24:10716–10725

    PubMed  CAS  Google Scholar 

  • Katoh A, Kitazawa H, Itohara S, Nagao S (2000) Inhibition of nitric oxide synthesis and gene knockout of neuronal nitric oxide synthase impaired adaptation of mouse optokinetic response eye movements. Learn Mem 7:220–226

    PubMed  CAS  Google Scholar 

  • Kemp-Harper B, Feil R (2008) Meeting report:cGMP matters. Sci Signal 1:pe12

    PubMed  Google Scholar 

  • Kingston PA, Zufall F, Barnstable CJ (1996) Rat hippocampal neurons express genes for both rod retinal and olfactory cyclic nucleotide-gated channels:novel targets for cAMP/cGMP function. Proc Natl Acad Sci USA 93:10440–10445

    PubMed  CAS  Google Scholar 

  • Kleppisch T, Pfeifer A, Klatt P, Ruth P, Montkowski A, Fassler R, Hofmann F (1999) Long-term potentiation in the hippocampal CA1 region of mice lacking cGMP-dependent kinases is normal and susceptible to inhibition of nitric oxide synthase. J Neurosci 19:48–55

    PubMed  CAS  Google Scholar 

  • Kleppisch T, Wolfsgruber W, Feil S, Allmann R, Wotjak CT, Goebbels S, Nave KA, Hofmann F, Feil R (2003) Hippocampal cGMP-dependent protein kinase I supports an age- and protein synthesis-dependent component of long-term potentiation but is not essential for spatial reference and contextual memory. J Neurosci 23:6005–6012

    PubMed  CAS  Google Scholar 

  • Koesling D, Mergia E, Taqatqeh F, Mittmann T, Becker A, Hoellt V, Grecksch G (2007) Functional roles of isoforms of NO-sensitive guanylyl cyclase. BMC Pharmacology 7:S44

    Google Scholar 

  • Komatsu Y, Nakao K, Suga S, Ogawa Y, Mukoyama M, Arai H, Shirakami G, Hosoda K, Nakagawa O, Hama N, et al. (1991) C-type natriuretic peptide (CNP) in rats and humans. Endocrinology 129:1104–1106

    Article  PubMed  CAS  Google Scholar 

  • Kotera J, Yanaka N, Fujishige K, Imai Y, Akatsuka H, Ishizuka T, Kawashima K, Omori K (1997) Expression of rat cGMP-binding cGMP-specific phosphodiesterase mRNA in Purkinje cell layers during postnatal neuronal development. Eur J Biochem 249:434–442

    PubMed  CAS  Google Scholar 

  • Kotera J, Fujishige K, Omori K (2000) Immunohistochemical localization of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in rat tissues. J Histochem Cytochem 48:685–693

    PubMed  CAS  Google Scholar 

  • Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709

    PubMed  CAS  Google Scholar 

  • Labouebe G, Lomazzi M, Cruz HG, Creton C, Lujan R, Li M, Yanagawa Y, Obata K, Watanabe M, Wickman K, Boyer SB, Slesinger PA, Luscher C (2007) RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat Neurosci 10:1559–1568

    PubMed  CAS  Google Scholar 

  • Larkman AU, Jack JJ (1995) Synaptic plasticity: hippocampal LTP. Curr Opin Neurobiol 5: 324–334

    PubMed  CAS  Google Scholar 

  • Lein ES, Hawrylycz MJ, et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    PubMed  CAS  Google Scholar 

  • L'Etoile ND, Coburn CM, Eastham J, Kistler A, Gallegos G, Bargmann CI (2002) The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation inC. elegans. Neuron 36:1079–1089

    PubMed  Google Scholar 

  • Lev-Ram V, Makings LR, Keitz PF, Kao JP, Tsien RY (1995) Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+transients. Neuron 15:407–415

    PubMed  CAS  Google Scholar 

  • Lev-Ram V, Jiang T, Wood J, Lawrence DS, Tsien RY (1997a) Synergies and coincidence requirements between NO, cGMP, and Ca2+in the induction of cerebellar long-term depression. Neuron 18:1025–1038

    CAS  Google Scholar 

  • Lev-Ram V, Nebyelul Z, Ellisman MH, Huang PL, Tsien RY (1997b) Absence of cerebellar long-term depression in mice lacking neuronal nitric oxide synthase. Learn Mem 4:169–177

    CAS  Google Scholar 

  • Lewin MR, Walters ET (1999) Cyclic GMP pathway is critical for inducing long-term sensitization of nociceptive sensory neurons. Nat Neurosci 2:18–23

    PubMed  CAS  Google Scholar 

  • Li S, Doss JC, Hardee EJ, Quock RM (2005) Involvement of cyclic GMP-dependent protein kinase in nitrous oxide-induced anxiolytic-like behavior in the mouse light/dark exploration test. Brain Res 1038:113–117

    PubMed  CAS  Google Scholar 

  • Lisman J (2003) Actin's actions in LTP-induced synapse growth. Neuron 38:361–362

    Google Scholar 

  • Lisman J, Raghavachari S (2006) A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci STKE 2006(356):re11

    Google Scholar 

  • Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190

    PubMed  CAS  Google Scholar 

  • Liu S, Ninan I, Antonova I, Battaglia F, Trinchese F, Narasanna A, Kolodilov N, Dauer W, Hawkins RD, Arancio O (2004) Alpha-synuclein produces a long-lasting increase in neurotransmitter release. Embo J 23:4506–4516

    PubMed  CAS  Google Scholar 

  • Lohmann SM, Walter U, Miller PE, Greengard P, De Camilli P (1981) Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain. Proc Natl Acad Sci USA 78:653–657

    PubMed  CAS  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    PubMed  CAS  Google Scholar 

  • Lu YF, Hawkins RD (2002) Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J Neurophysiol 88:1270–1278

    PubMed  CAS  Google Scholar 

  • Lu YF, Kandel ER, Hawkins RD (1999) Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 19:10250–10261

    PubMed  CAS  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    PubMed  CAS  Google Scholar 

  • Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    PubMed  CAS  Google Scholar 

  • Man HY, Lin JW, Ju WH, Ahmadian G, Liu L, Becker LE, Sheng M, Wang YT (2000) Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internaliza-tion. Neuron 25:649–662

    PubMed  CAS  Google Scholar 

  • Manahan-Vaughan D, Braunewell KH (1999) Novelty acquisition is associated with induction of hippocampal long-term depression. Proc Natl Acad Sci USA 96:8739–8744

    PubMed  CAS  Google Scholar 

  • Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5:844–852

    PubMed  CAS  Google Scholar 

  • Martin TF (2001) PI(4,5)P(2) regulation of surface membrane traffic. Curr Opin Cell Biol 13: 493–499

    PubMed  CAS  Google Scholar 

  • Mauk MD, Garcia KS, Medina JF, Steele PM (1998) Does cerebellar LTD mediate motor learning? Toward a resolution without a smoking gun. Neuron 20:359–362

    PubMed  CAS  Google Scholar 

  • McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390:607–611

    PubMed  CAS  Google Scholar 

  • Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5:660–670

    PubMed  CAS  Google Scholar 

  • Mergia E, Russwurm M, Zoidl G, Koesling D (2003) Major occurrence of the new alpha2beta1 isoform of NO-sensitive guanylyl cyclase in brain. Cell Signal 15:189–195

    PubMed  CAS  Google Scholar 

  • Mergia E, Friebe A, Dangel O, Russwurm M, Koesling D (2006) Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest 116:1731–1737

    PubMed  CAS  Google Scholar 

  • Mery F, Belay AT, So AK, Sokolowski MB, Kawecki TJ (2007) Natural polymorphism affecting learning and memory in Drosophila. Proc Natl Acad Sci USA 104:13051–13055

    PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Straub RE, Lipska BK, Verchinski BA, Goldberg T, Callicott JH, Egan MF, Huffaker SS, Mattay VS, Kolachana B, Kleinman JE, Weinberger DR (2007) Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. J Clin Invest 117:672–682

    PubMed  CAS  Google Scholar 

  • Micheva KD, Holz RW, Smith SJ (2001) Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity. J Cell Biol 154:355–368

    PubMed  CAS  Google Scholar 

  • Micheva KD, Buchanan J, Holz RW, Smith SJ (2003) Retrograde regulation of synaptic vesicle endocytosis and recycling. Nat Neurosci 6:925–932

    PubMed  CAS  Google Scholar 

  • Milman HA, Arnold SB (2002) Neurologic, psychological, and aggressive disturbances with silde-nafil. Ann Pharmacother 36:1129–1134

    PubMed  CAS  Google Scholar 

  • Milner B (2003) Visual recognition and recall after right temporal-lobe excision in man. Epilepsy Behav 4:799–812

    PubMed  Google Scholar 

  • Ninan I, Arancio O (2004) Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons. Neuron 42:129–141

    PubMed  CAS  Google Scholar 

  • Nishi A, Watanabe Y, Higashi H, Tanaka M, Nairn AC, Greengard P (2005) Glutamate regulation of DARPP-32 phosphorylation in neostriatal neurons involves activation of multiple signaling cascades. Proc Natl Acad Sci USA 102:1199–1204

    PubMed  CAS  Google Scholar 

  • Nolan MF, Malleret G, Dudman JT, Buhl DL, Santoro B, Gibbs E, Vronskaya S, Buzsaki G, Siegelbaum SA, Kandel ER, Morozov A (2004) A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119:719–732

    PubMed  CAS  Google Scholar 

  • Nugent FS, Penick EC, Kauer JA (2007) Opioids block long-term potentiation of inhibitory synapses. Nature 446:1086–1090

    PubMed  CAS  Google Scholar 

  • O'Dell TJ, Huang PL, Dawson TM, Dinerman JL, Snyder SH, Kandel ER, Fishman MC (1994) Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science 265:542–546

    PubMed  Google Scholar 

  • Oliveira-Dos-Santos AJ, Matsumoto G, Snow BE, Bai D, Houston FP, Whishaw IQ, Mariathasan S, Sasaki T, Wakeham A, Ohashi PS, Roder JC, Barnes CA, Siderovski DP, Penninger JM (2000) Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc Natl Acad Sci USA 97:12272–12277

    PubMed  CAS  Google Scholar 

  • Osborne KA, Robichon A, Burgess E, Butland S, Shaw RA, Coulthard A, Pereira HS, Greenspan RJ, Sokolowski MB (1997) Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277:834–836

    PubMed  CAS  Google Scholar 

  • Osborne SL, Meunier FA, Schiavo G (2001) Phosphoinositides as key regulators of synaptic function. Neuron 32:9–12

    PubMed  CAS  Google Scholar 

  • Oster H, Werner C, Magnone MC, Mayser H, Feil R, Seeliger MW, Hofmann F, Albrecht U (2003) cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr Biol 13:725–733

    PubMed  CAS  Google Scholar 

  • Parent A, Schrader K, Munger SD, Reed RR, Linden DJ, Ronnett GV (1998) Synaptic transmission and hippocampal long-term potentiation in olfactory cyclic nucleotide-gated channel type 1 null mouse. J Neurophysiol 79:3295–3301

    PubMed  CAS  Google Scholar 

  • Paul C, Weinmeister P, Feil R, Hofmann F, Kleppisch T (2007) cGMP-dependent kinase I supports formation of associative fear memory and long-term potentiation in the lateral amygdala. BMC Pharmacol 7:P46

    Google Scholar 

  • Pedram A, Razandi M, Kehrl J, Levin ER (2000) Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins. J Biol Chem 275:7365–7372

    PubMed  CAS  Google Scholar 

  • Pfeifer A, Aszodi A, Seidler U, Ruth P, Hofmann F, Fassler R (1996) Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274:2082–2086

    PubMed  CAS  Google Scholar 

  • Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, Aszodi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fassler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. Embo J 17:3045–3051

    PubMed  CAS  Google Scholar 

  • Pilz RB, Casteel DE (2003) Regulation of gene expression by cyclic GMP. Circ Res 93:1034–1046

    PubMed  CAS  Google Scholar 

  • Plant K, Pelkey KA, Bortolotto ZA, Morita D, Terashima A, McBain CJ, Collingridge GL, Isaac JT (2006) Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci 9:602–604

    PubMed  CAS  Google Scholar 

  • Prasad HC, Zhu CB, McCauley JL, Samuvel DJ, Ramamoorthy S, Shelton RC, Hewlett WA, Sutcliffe JS, Blakely RD (2005) Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci USA 102:11545–11550

    PubMed  CAS  Google Scholar 

  • Prickaerts J, van Staveren WC, Sik A, Markerink-van Ittersum M, Niewohner U, van der Staay FJ, Blokland A, de Vente J (2002) Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience 113:351–361

    PubMed  CAS  Google Scholar 

  • Prickaerts J, Sik A, van Staveren WC, Koopmans G, Steinbusch HW, van der Staay FJ, de Vente J, Blokland A (2004) Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int 45:915–928

    PubMed  CAS  Google Scholar 

  • Puzzo D, Vitolo O, Trinchese F, Jacob JP, Palmeri A, Arancio O (2005) Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci 25:6887–6897

    PubMed  CAS  Google Scholar 

  • Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI (2008) Lethargus is aCaenorhabditis elegans sleep-like state. Nature 451:569–572

    PubMed  CAS  Google Scholar 

  • Rapoport M, van Reekum R, Mayberg H (2000) The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatry Clin Neurosci 12:193–198

    PubMed  CAS  Google Scholar 

  • Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131

    PubMed  CAS  Google Scholar 

  • Reinhard M, Jarchau T, Walter U (2001) Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem Sci 26:243–249

    PubMed  CAS  Google Scholar 

  • Repaske DR, Corbin JG, Conti M, Goy MF (1993) A cyclic GMP-stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of the rat brain. Neuroscience 56:673–686

    PubMed  CAS  Google Scholar 

  • Revermann M, Maronde E, Ruth P, Korf HW (2002) Protein kinase G I immunoreaction is colo-calized with arginine-vasopressin immunoreaction in the rat suprachiasmatic nucleus. Neurosci Lett 334:119–122

    PubMed  CAS  Google Scholar 

  • Reyes M, Stanton PK (1996) Induction of hippocampal long-term depression requires release of Ca2+from separate presynaptic and postsynaptic intracellular stores. J Neurosci 16:5951–5960

    PubMed  CAS  Google Scholar 

  • Reyes-Harde M, Empson R, Potter BV, Galione A, Stanton PK (1999a) Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc Natl Acad Sci USA 96:4061–4066

    CAS  Google Scholar 

  • Reyes-Harde M, Potter BV, Galione A, Stanton PK (1999b) Induction of hippocampal LTD requires nitric-oxide-stimulated PKG activity and Ca2+release from cyclic ADP-ribose-sensitive stores. J Neurophysiol 82:1569–1576

    CAS  Google Scholar 

  • Rieke F, Schwartz EA (1994) A cGMP-gated current can control exocytosis at cone synapses. Neuron 13:863–873

    PubMed  CAS  Google Scholar 

  • Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term poten-tiation in the amygdala. Nature 390:604–607

    PubMed  CAS  Google Scholar 

  • Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83–88

    PubMed  CAS  Google Scholar 

  • Russwurm M, Wittau N, Koesling D (2001) Guanylyl cyclase/PSD-95 interaction: targeting of the nitric oxide-sensitive alpha2beta1 guanylyl cyclase to synaptic membranes. J Biol Chem 276:44647–44652

    PubMed  CAS  Google Scholar 

  • Sabatini MJ, Ebert P, Lewis DA, Levitt P, Cameron JL, Mirnics K (2007) Amygdala gene expression correlates of social behavior in monkeys experiencing maternal separation. J Neurosci 27:3295–3304

    PubMed  CAS  Google Scholar 

  • Sano H, Nagai Y, Miyakawa T, Shigemoto R, Yokoi M (2008) Increased social interaction in mice deficient of the striatal medium spiny neuron-specific phosphodiesterase 10A2. J Neurochem 105(2):546–556

    PubMed  CAS  Google Scholar 

  • Sato T, Suzuki E, Yokoyama M, Watanabe S, Miyaoka H (2006) Auditory fear conditioning and conditioned stress raise NO(3) level in the amygdala. Neuropsychobiology 53:142–147

    PubMed  Google Scholar 

  • Savchenko A, Barnes S, Kramer RH (1997) Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide. Nature 390:694–698

    PubMed  CAS  Google Scholar 

  • Schafe GE, Bauer EP, Rosis S, Farb CR, Rodrigues SM, LeDoux JE (2005) Memory consolidation of Pavlovian fear conditioning requires nitric oxide signaling in the lateral amygdala. Eur J Neurosci 22:201–211

    PubMed  Google Scholar 

  • Schmidt CJ, Chapin DS, Cianfrogna J, Corman ML, Hajos M, Harms JF, Hoffman WE, Lebel LA, McCarthy SA, Nelson FR, Proulx-Lafrance C, Majchrzak MJ, Ramirez AD, Schmidt K, Seymour PA, Siuciak JA, Tingley Iii FD, Williams RD, Verhoest PR, Menniti FS (2008) Pre-clinical characterization of selective PDE10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 325(2):681–690

    PubMed  CAS  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neu-rochem 20:11–21

    CAS  Google Scholar 

  • Serulle Y, Zhang S, Ninan I, Puzzo D, McCarthy M, Khatri L, Arancio O, Ziff EB (2007) A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 56:670–688

    PubMed  CAS  Google Scholar 

  • Shin JH, Linden DJ (2005) An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal. J Neurophysiol 94:4281–4289

    PubMed  CAS  Google Scholar 

  • Sigurdsson T, Doyere V, Cain CK, LeDoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52:215–227

    PubMed  CAS  Google Scholar 

  • Siuciak JA, McCarthy SA, Chapin DS, Martin AN, Harms JF, Schmidt CJ (2008) Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background. Neuropharmacology 54:417–427

    PubMed  CAS  Google Scholar 

  • Sokolowski M (2007) cGMP kinase and food-related behaviours. BMC Pharmacol 7:S46

    Google Scholar 

  • Son H, Hawkins RD, Martin K, Kiebler M, Huang PL, Fishman MC, Kandel ER (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87:1015–1023

    PubMed  CAS  Google Scholar 

  • Starke K (1981) Presynaptic receptors. Annu Rev Pharmacol Toxicol 21:7–30

    PubMed  CAS  Google Scholar 

  • Straub RE, Lehner T, Luo Y, Loth JE, Shao W, Sharpe L, Alexander JR, Das K, Simon R, Fieve RR, et al (1994) A possible vulnerability locus for bipolar affective disorder on chromosome 21q22.3. Nat Genet 8:291–296

    PubMed  CAS  Google Scholar 

  • Strijbos PJ, Pratt GD, Khan S, Charles IG, Garthwaite J (1999) Molecular characterization and in situ localization of a full-length cyclic nucleotide-gated channel in rat brain. Eur J Neurosci 11:4463–4467

    PubMed  CAS  Google Scholar 

  • Sudoh T, Minamino N, Kangawa K, Matsuo H (1988) Brain natriuretic peptide-32: N-terminal six amino acid extended form of brain natriuretic peptide identified in porcine brain. Biochem Biophys Res Commun 155:726–732

    PubMed  CAS  Google Scholar 

  • Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Com-mun 168:863–870

    CAS  Google Scholar 

  • Sun X, Kaltenbronn KM, Steinberg TH, Blumer KJ (2005) RGS2 is a mediator of nitric oxide action on blood pressure and vasoconstrictor signaling. Mol Pharmacol 67:631–639

    PubMed  CAS  Google Scholar 

  • Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296

    PubMed  CAS  Google Scholar 

  • Szabadits E, Cserep C, Ludanyi A, Katona I, Gracia-Llanes J, Freund TF, Nyiri G (2007) Hip-pocampal GABAergic synapses possess the molecular machinery for retrograde nitric oxide signaling. J Neurosci 27:8101–8111

    PubMed  CAS  Google Scholar 

  • Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512

    PubMed  CAS  Google Scholar 

  • Tsay D, Dudman JT, Siegelbaum SA (2007) HCN1 channels constrain synaptically evoked Ca2+spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56:1076–1089

    PubMed  CAS  Google Scholar 

  • Tsou K, Snyder GL, Greengard P (1993) Nitric oxide/cGMP pathway stimulates phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, in the substantia nigra. Proc Natl Acad Sci USA 90:3462–3465

    PubMed  CAS  Google Scholar 

  • Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34:289–300

    PubMed  CAS  Google Scholar 

  • Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE (2007) Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs. BMC Genet 8:10

    PubMed  Google Scholar 

  • van Staveren WC, Markerink-van Ittersum M, Steinbusch HW, Behrends S, de Vente J (2005) Localization and characterization of cGMP-immunoreactive structures in rat brain slices after NO-dependent and NO-independent stimulation of soluble guanylyl cyclase. Brain Res 1036:77–89

    PubMed  Google Scholar 

  • Volke V, Wegener G, Vasar E (2003) Augmentation of the NO-cGMP cascade induces anxiogenic-like effect in mice. J Physiol Pharmacol 54:653–660

    PubMed  CAS  Google Scholar 

  • Wang YT, Linden DJ (2000) Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25:635–647

    PubMed  CAS  Google Scholar 

  • Wang HG, Lu FM, Jin I, Udo H, Kandel ER, de Vente J, Walter U, Lohmann SM, Hawkins RD, Antonova I (2005) Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron 45:389–403

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Saito H, Abe K (1995) Nitric oxide is involved in long-term potentiation in the medial but not lateral amygdala neuron synapses in vitro. Brain Res 688:233–236

    PubMed  CAS  Google Scholar 

  • Weber S, Bernhard D, Lukowski R, Weinmeister P, Worner R, Wegener JW, Valtcheva N, Feil S, Schlossmann J, Hofmann F, Feil R (2007) Rescue of cGMP kinase I knockout mice by smooth muscle specific expression of either isozyme. Circ Res 101(11):1096–1103

    PubMed  CAS  Google Scholar 

  • Wegener JW, Nawrath H, Wolfsgruber W, Kuhbandner S, Werner C, Hofmann F, Feil R (2002) cGMP-dependent protein kinase I mediates the negative inotropic effect of cGMP in the murine myocardium. Circ Res 90:18–20

    PubMed  CAS  Google Scholar 

  • Welsh JP, Yamaguchi H, Zeng XH, Kojo M, Nakada Y, Takagi A, Sugimori M, Llinas RR (2005) Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proc Natl Acad Sci USA 102:17166–17171

    PubMed  CAS  Google Scholar 

  • Werner C, Raivich G, Cowen M, Strekalova T, Sillaber I, Buters JT, Spanagel R, Hofmann F (2004) Importance of NO/cGMP signalling via cGMP-dependent protein kinase II for controlling emotionality and neurobehavioural effects of alcohol. Eur J Neurosci 20:3498–3506

    PubMed  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    PubMed  CAS  Google Scholar 

  • Wilson RI, Godecke A, Brown RE, Schrader J, Haas HL (1999) Mice deficient in endothelial nitric oxide synthase exhibit a selective deficit in hippocampal long-term potentiation. Neuroscience 90:1157–1165

    PubMed  CAS  Google Scholar 

  • Wisden W, Seeburg PH (1993) Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol 3:291–298

    PubMed  CAS  Google Scholar 

  • Wong ML, Whelan F, Deloukas P, Whittaker P, Delgado M, Cantor RM, McCann SM, Licinio J (2006) Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. Proc Natl Acad Sci USA 103:15124–15129

    PubMed  CAS  Google Scholar 

  • Xia C, Bao Z, Yue C, Sanborn BM, Liu M (2001) Phosphorylation and regulation of G-protein-activated phospholipase C-beta 3 by cGMP-dependent protein kinases. J Biol Chem 276:19770–19777

    PubMed  CAS  Google Scholar 

  • Zhang YW, Gesmonde J, Ramamoorthy S, Rudnick G (2007) Serotonin transporter phosphory-lation by cGMP-dependent protein kinase is altered by a mutation associated with obsessive compulsive disorder. J Neurosci 27:10878–10886

    PubMed  CAS  Google Scholar 

  • Zhu CB, Hewlett WA, Feoktistov I, Biaggioni I, Blakely RD (2004) Adenosine receptor, protein kinase G, and p38 mitogen-activated protein kinase-dependent up-regulation of serotonin transporters involves both transporter trafficking and activation. Mol Pharmacol 65:1462–1474

    PubMed  CAS  Google Scholar 

  • Zhuo M, Hu Y, Schultz C, Kandel ER, Hawkins RD (1994) Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368:635–639

    PubMed  CAS  Google Scholar 

  • Zufall F, Shepherd GM, Barnstable CJ (1997) Cyclic nucleotide gated channels as regulators of CNS development and plasticity. Curr Opin Neurobiol 7:404–412

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kleppisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Kleppisch, T., Feil, R. (2009). cGMP Signalling in the Mammalian Brain: Role in Synaptic Plasticity and Behaviour. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_24

Download citation

Publish with us

Policies and ethics