Skip to main content

Impact of Time Variable Gravity on Annual Sea Level Variability from Altimetry

  • Conference paper
  • First Online:
IAG 150 Years

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 143))

Abstract

This study investigates seasonal to interannual changes in regional sea level caused by the recent replacement of the geopotential model EIGEN-GL04S_annual by the model EIGEN-6S for the precise orbit determination of satellite altimeters. We have analysed the radial orbit components for the Envisat, ERS-2 and TOPEX missions originating from two orbit solutions processed at the GeoForschungsZentrum (GFZ). These orbits were computed almost identically except for the use of the two different geopotential models mentioned above. An alternative orbit solution for Envisat provided by the European Space Operations Centre based on the model EIGEN-6C has been analysed as well. Empirical Orthogonal Functions (EOF) of the detrended radial orbit differences have been applied to study the typical spatio-temporal scales. The dominant EOF modes for all orbit differences exhibit large-scale bipolar patterns with opposite phase suggestive of apparent shifts of the origins of the different orbit solutions. In case the geopotential model is replaced the detrended radial orbit differences for all three missions are dominated by annual oscillations. The spatial patterns of these annual oscillations are similar for all three missions, with the TOPEX patterns and the ERS-2/Envisat patterns being out of phase. The annual amplitude reaches 5 mm at its maxima which corresponds to up to ∼10% of the annual sea level signal itself for some locations. In addition, it accounts for annual changes of the height gradient between the two maxima of the first EOF-patterns of up to 1 cm with inverse changes for TOPEX and ERS-2/Envisat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85:457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Bertiger W, Desai SD, Dorsey A, Haines BJ, Harvey N, Kuang D, Sibthorpe A, Weiss JP (2010) Sub-centimeter precision orbit determination with GPS for ocean altimetry. Mar Geod 33:363–378. doi:10.1080/01490419.2010.487800

    Article  Google Scholar 

  • Cerri L, Berthias JP, Bertiger WI, Haines BJ, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebart M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar Geod 33:379–418. doi:10.1080/01490419.2010.488966

    Article  Google Scholar 

  • IERS Conventions 2003 (2004). Dennis D. McCarthy and Grard Petit (eds). IERS technical note no. 32, Verlag des Bundesamts fr Kartographie und Geodsie, Frankfurt am Main, ISBN 3-89888-884-3

    Google Scholar 

  • Dobslaw H, Flechtner F, Bergmann-Wolf I, Dahle C, Dill R, Esselborn S, Sasgen I, Thomas M (2013) Simulating high-frequency atmosphere-ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL05. J Geophys Res Ocean 118:3704–37011. doi:10.1002/jgrc.20271

    Article  Google Scholar 

  • Doornbos E, Scharroo R, Klinkrad H, Zandbergen R, Fritsche B (2002) Improved modelling of surface forces in the orbit determination of ERS and ENVISAT. Can J Remote Sens 28:535–543. doi:10.5589/m02-055

    Article  Google Scholar 

  • Folkner WM, Williams JG, Boggs DH (2008) The planetary and lunar ephemeris DE 421. IPN Progress Report 42–178

    Google Scholar 

  • Förste C, Bruinsma S, Shako R, Marty J-C, Flechtner F, Abrykosov O, Dahle C, Lemoine J-M, Neumayer K-H, Biancale R (2011) EIGEN-6 – a new combined global gravity field model including GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. Geophys Res Abstr 13: EGU2011-3242-2 (EGU General Assembly. Conference Abstracts, p 3242)

    Google Scholar 

  • Fu L-L, Haines BJ (2013) The challenges in long-term altimetry calibration for addressing the problem of global sea level change. Adv Space Res 51:1284–1300. doi:10.1016/j.asr.2012.06.005

    Article  Google Scholar 

  • Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27:1119–1152. doi:10.1002/joc.1499

    Article  Google Scholar 

  • Hedin AE (1987) MSIS-86 thermospheric model. J Geophy Res Space Phys 92:4649–4662. doi:10.1029/JA092iA05p04649

    Article  Google Scholar 

  • Hedin AE (1991) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res 96:1159–1172. doi:10.1029/90JA02125

    Article  Google Scholar 

  • Knocke P, Ries J (1987) Earth radiation pressure effects on satellites. Technical Memorandum CSR-TM-87-01. Center for Space Research, the University of Texas at Austin, USA

    Google Scholar 

  • Larnicol G, Cazenave A, Faugère Y, Ablain M, Johannessen J, Stammer D, Timms G, Knudsen P, Cipolini P, Roca M, Rudenko S, Fernandes J, Balmaseda M, Guinle T, Benveniste J (2013) ESA sea level climate change initiative. http://www.esa-sealevel-cci.org/webfm_send/123. Accessed Oct 2013

  • Lemoine J-M, Bruinsma S, Loyer S, Biancale R, Marty J-C, Perosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39:1620–1629. doi:10.1016/j.asr.2007.03.062

    Article  Google Scholar 

  • Lemoine FG, Zelensky NP, Chinn DS, Pavlis DE, Rowlands DD, Beckley BD, Luthcke SB, Willis P, Ziebart M, Sibthorpe A, Boy JP, Luceri V (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46:1513–1540. doi:10.1016/j.asr.2010.05.007

    Article  Google Scholar 

  • Lemoine F, Zelensky NP, Melachroinos S, Chin DS, Beckley BD, Rowlands DD, Luthcke SB (2011) GSFC OSTM (Jason-2), Jason-1 & TOPEX POD Update, OSTST Meeting, San Diego. http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2011/oral/02_Thursday/Splinter%203%20POD/03%20rev%20Lemoine_etal_SWT2011_v01.pdf. Accessed Oct 2013

  • Letellier T (2005) Etude des ondes de marée sur les plateaux continentaux. These doctorale, Universite de Toulouse III, Ecole Doctorale des Sciences de l’Univers, de l’Environnement et de l’Espace, p 237

    Google Scholar 

  • Mayer-Gürr T, Savcenko R, Bosch W, Daras I, Flechtner F, Dahle C (2012) Ocean tides from satellite altimetry and GRACE. J Geodyn 59–60:28–38. doi:10.1016/j.jog.2011.10.009

    Article  Google Scholar 

  • Melachroinos SA, Lemoine FG, Zelensky NP, Rowlands DD, Luthcke SB, Bordyugov O (2013) The effect of geocenter motion on Jason-2 orbits and the mean sea level. Adv Space Res 51:1323–1334. doi:10.1016/j.asr.2012.06.004

    Article  Google Scholar 

  • Ollivier A, Faugere Y, Picot N, Ablain M, Femenias P, Benveniste J (2012) Envisat ocean altimeter becoming relevant for mean sea level trend studies. Mar Geod 35:118–136. doi:10.1080/01490419.2012.721632

    Article  Google Scholar 

  • Otten M, Flohrer C, Springer T, Dow J (2010) DORIS processing at the European Space Operations Centre. Adv Space Res 46:1606–1613. doi:10.1016/j.asr.2010.04.024

    Article  Google Scholar 

  • Rudenko S, Otten M, Visser P, Scharroo R, Schöne T, Esselborn S (2012) New improved orbit solutions for the ERS-1 and ERS-2 satellites. Adv Space Res 49:1229–1244. doi:10.1016/j.asr.2012.01.021

    Article  Google Scholar 

  • Rudenko S, Dettmering D, Esselborn S, Schöne T, Förste C, Lemoine J-M, Ablain M, Alexandre D, Neumayer K-H (2014) Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Adv Space Res. doi:10.1016/j.asr.2014.03.010

    Google Scholar 

  • Schöne T, Esselborn S, Rudenko S, Raimondo J-C (2010) Radar altimetry derived sea level anomalies – the benefit of new orbits and harmonization. In: Flechtner FM, Gruber T, Güntner A et al (eds) System earth via geodetic-geophysical space techniques. Springer, Berlin, pp 317–324

    Chapter  Google Scholar 

  • Shako R, Förste C, Abrikosov O, Bruinsma S, Marty J-C, Lemoine J-M, Flechtner F, Neumayer H, Dahle C (2014) EIGEN-6C: a high-resolution global gravity combination model including GOCE data. In: Flechtner F, Sneeuw N, Schuh W-D (eds) Observation of the system earth from space - CHAMP, GRACE, GOCE and future missions. Springer, Berlin, pp 155–161. doi:10.1007/978-3-642-32135-1

    Chapter  Google Scholar 

  • Standish EM (1998) JPL planetary and lunar ephemerides, DE405/LE405, JPL IOM 312.F-98-048

    Google Scholar 

  • Tapley BD, Ries JC, Davis GW, Eanes RJ, Schutz BE, Shum CK, Watkins MM, Marshall JA, Nerem RS, Putney BH, Klosko SM, Luthcke SB, Pavlis D, Williamson RG, Zelensky NP (1994) Precision orbit determination for TOPEX/POSEIDON. J Geophys Res 99:24383–24404. doi:10.1029/94JC01645

    Article  Google Scholar 

  • Willis P, Ries JC, Zelensky NP, Soudarin L, Fagard H, Pavlis EC, Lemoine FG (2009) DPOD2005: an extension of ITRF2005 for precise orbit determination. Adv Space Res 44:535–544. doi:10.1016/j.asr.2009.04.018

    Article  Google Scholar 

  • Zelensky N, Lemoine FG, Beckley BD, Chinn DS, Melachroinos S, Luthcke SB, Mitchum G, Bordyugov O (2012) Improved modeling of time variable gravity for altimeter satellite POD., OSTST 2012, Venice. http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2012/posters/Zelensky_TVG_modelling_for_POD.pdf. Accessed Jan 2014

  • Zhu S, Reigber C, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geod 78:103–108. doi:10.1007/s00190-004-0379-0

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments. We thank ESOC for providing Envisat solution v8 orbits (ftp://dgn6.esoc.esa.int/envisat/sol8/envisat.sol8.txt). This work was partly supported by the European Space Agency within the Climate Change Initiative Sea Level Project, by the Helmholtz Climate Initiative REKLIM and by DFG within the project UHR-GravDat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saskia Esselborn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Esselborn, S., Schöne, T., Rudenko, S. (2015). Impact of Time Variable Gravity on Annual Sea Level Variability from Altimetry. In: Rizos, C., Willis, P. (eds) IAG 150 Years. International Association of Geodesy Symposia, vol 143. Springer, Cham. https://doi.org/10.1007/1345_2015_103

Download citation

Publish with us

Policies and ethics