Skip to main content

Radar Altimetry Derived Sea Level Anomalies – The Benefit of New Orbits and Harmonization

  • Chapter
  • First Online:
System Earth via Geodetic-Geophysical Space Techniques

Part of the book series: Advanced Technologies in Earth Sciences ((ATES))

Abstract

Most of today’s sea level studies are using the recent and high quality data of JASON-1 and TOPEX/Poseidon. Previous missions, like, e.g., ERS-1 or GEOSAT, show significant higher noise and errors. One of the main error sources is the orbit determination. In this study new GEOSAT orbits have been derived using new models and orbit determination strategies. With the new orbits the accuracy in terms of cross-over RMS is reduced from 15 to 9 cm RMS, which is almost the level of ERS-2. In addition, the orbit accuracy becomes more uniform for both the Geodetic Mission and Exact Repeat Mission period. The effects of recomputed satellite orbits on sea-level anomalies are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of global mean sea level from altimeters highlights a reduction of global trend from 2005 to 2008. Ocean Sci. Discuss. 6, 31–56.

    Article  Google Scholar 

  • AVISO (2008) SMM-MU-M5-OP-13184-CN, Edition 4.1, October 2008, http://www.aviso.oceanobs.com/fileadmin/documents/data/tools/hdbk_j1_gdr.pdf

  • Biancale R, Bode A (2006) Mean annual and seasonal atmospheric tide models based on 3-hourly and 6-hourly ECMWF surface pressure data. GFZ Scientific Technical Report 06/01, doi: 10.2312/GFZ.b103-06011.

    Google Scholar 

  • Boucher C, Altamimi Z, Sillard P, Feissel-Vernier M (2004) The ITRF2000. IERS Technical Note, No. 31.

    Google Scholar 

  • Flechtner F, Schmidt R, Meyer U, Schöne T, Esselborn S, Förste C, Stubenvoll R, Rudenko S, Neumayer KH, Rothacher M, König R (2006) The benefit of EIGEN gravity field models for altimetry and vice versa. In: International Symposium on “15 Years of Progress in Radar Altimetry” Symposium (Venice 2006).

    Google Scholar 

  • Foerste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J. Geod. 82(6), 331–346, doi: 10.1007/s00190-007-0183-8.

    Article  Google Scholar 

  • GEOSAT Handbook (1997) http://ibis.grdl.noaa.gov/SAT/gdrs/geosat_handbook

  • Hedin AE (1987) MSIS-86 thermospheric model. JGR 92, 4649–4662.

    Article  Google Scholar 

  • Hopfield HS (1969) Two-quadratic tropospheric refractivity profile for correction satellite data. JGR 74(18), 4487–4499.

    Article  Google Scholar 

  • Knocke P, Ries J (1987) Earth radiation pressure effects on satellites. Technical Memorandum CSR-TM-87–01. Center for Space Research, The University of Texas at Austin, USA.

    Google Scholar 

  • Letellier T (2004) Etude des ondes de marée sur les plateux continentaux. Thèse doctorale, Université de Toulouse III, Ecole Doctorale des Sciences de l’Univers, de l’Environnement et de l’Espace, 237 pp.

    Google Scholar 

  • Marini JW, Murray CW (1973) Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees. NASA GSFC X-591-73-351.

    Google Scholar 

  • Massmann FH, Neumayer KH, Raimondo JC, Enninghost K, Li H (1997) Quality of the D-PAF ERS orbits before and after inclusion of PRARE data. Proceedings of the 3rd ERS Symposium on Space at the service of our Environment, Florence, Italy, 17–21 March 1997, ESA SP-414, 3 Vols.

    Google Scholar 

  • McCarthy DD, Petit G (eds.) (2003) IERS Conventions. IERS Technical Note 32.

    Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv. Space Res. 30(2), 135–143, doi: 10.1016/S0273-1177(02)00277-6.

    Article  Google Scholar 

  • Rudenko S, Schöne T (2007) Influence of parameterization on the accuracy of altimetry satellite orbits. Geophy. Res. Abstr. 9, 07492.

    Google Scholar 

  • Rudenko S, Schöne T, Gendt G, Zhang F, Thaller D (2007) Precise orbits of altimetry satellites and analysis of GPS data at tide gauges for sea level research. In: Observations of the System Earth from Space: status seminar, 22–23 November 2007, Bavarian Academy of Sciences and Humanities, Munich; Programme & Abstracts, Koordinierungsbüro GEOTECHNOLOGIEN, 41–46.

    Google Scholar 

  • Rudenko S, Schöne T, Raimondo JC (2006) Precise orbits of altimetry satellites ERS-1, ERS-2 and TOPEX/Poseidon. In: International Symposium on “15 Years of Progress in Radar Altimetry” (Venice 2006).

    Google Scholar 

  • Scharroo R, Schrama EJO, Naeije M, Benveniste J (2000) A recipe for upgrading ERS altimeter data. Proceedings of ERS-ENVISAT Symposium, Gothenburg, 2000.

    Google Scholar 

  • Scharroo R, Lillibridge JL, Smith WHF, Schrama EJO (2004) Cross-calibration and long-term monitoring of the microwave radiometers of ERS, TOPEX, GFO, Jason, and Envisat. Mar. Geod. 27, 279–308.

    Article  Google Scholar 

  • Standish EM (1998) JPL Planetary and Lunar Ephemerides, DE405/LE405, JPL IOM 312.F-98-048.

    Google Scholar 

  • Tavernier G, Fagard H, Feissel-Vernier M, Le Bail K, Lemoine F, Noll C, Noomen R, Ries JC, Soudarin L, Valette JJ, Willis P (2006) The international DORIS service: genesis and early achievements. In: DORIS Special Issue, P. Willis (ed.), J. Geod. 80(8–11), 403–417, doi: 10.1007/s00190-006-0082-4.

    Article  Google Scholar 

Download references

Acknowledgments

ILRS (Pearlman et al., 2002) and IDS (Tavernier et al., 2006) data were used. GEOSAT Doppler data were provided by C.K. Shum (Ohio). RA data are provided by ESA for ERS-1 and ERS-2, by NASA/CNES for TOPEX/Poseidon and JASON-1, and by NOAA for GEOSAT. This is publication no. GEOTECH-1252 of the GEOTECHNOLOGIEN programme of BMBF, grant 03F0434A. Altimetry and orbit data is available through the ADS system at GFZ http://adsc.gfz-potsdam.de/ads.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilo Schöne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schöne, T., Esselborn, S., Rudenko, S., Raimondo, JC. (2010). Radar Altimetry Derived Sea Level Anomalies – The Benefit of New Orbits and Harmonization. In: Flechtner, F., et al. System Earth via Geodetic-Geophysical Space Techniques. Advanced Technologies in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10228-8_25

Download citation

Publish with us

Policies and ethics