Skip to main content

Electrophysiological Features of Telocytes

  • Chapter
  • First Online:
Telocytes

Abstract

Telocytes (TCs) are interstitial cells described in multiple structures, including the gastrointestinal tract, respiratory tract, urinary tract, uterus, and heart. Several studies have indicated the possibility that TCs are involved in the pacemaker potential in these organs. It is supposed that TCs are interacting with the neighboring muscular cells and their network contributes to the initiation and propagation of the electrical potentials. In order to understand the contribution of TCs to various excitability mechanisms, it is necessary to analyze the plasma membrane proteins (e.g., ion channels) functionally expressed in these cells. So far, potassium, calcium, and chloride currents, but not sodium currents, have been described in TCs in primary cell culture from different tissues. Moreover, TCs have been described as sensors for mechanical stimuli (e.g., contraction, extension, etc.). In conclusion, TCs might play an essential role in gastrointestinal peristalsis, in respiration, in pregnant uterus contraction, or in miction, but further highlighting studies are necessary to understand the molecular mechanisms and the cell-cell interactions by which TCs contribute to the tissue excitability and pacemaker potentials initiation/propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceafalan L, Gherghiceanu M, Popescu LM, Simionescu O. Telocytes in human skin – are they involved in skin regeneration? J Cell Mol Med. 2012;16(7):1405–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gevaert T, De Vos R, Van Der Aa F, Joniau S, van den Oord J, Roskams T, De Ridder D. Identification of telocytes in the upper lamina propria of the human urinary tract. J Cell Mol Med. 2012;16(9):2085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koh BH, Roy R, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP, Hatton WJ, Ward SM, Sanders KM, Koh SD. Platelet-derived growth factor receptor-α cells in mouse urinary bladder: a new class of interstitial cells. J Cell Mol Med. 2012;16(4):691–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rusu MC, Nicolescu MI, Jianu AM, Lighezan R, Mănoiu VS, Păduraru D. Esophageal telocytes and hybrid morphologies. Cell Biol Int. 2012;36(12):1079–88.

    Article  PubMed  Google Scholar 

  5. Rusu MC, Jianu AM, Mirancea N, Didilescu AC, Mănoiu VS, Păduraru D. Tracheal telocytes. J Cell Mol Med. 2012;16(2):401–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suciu LC, Popescu BO, Kostin S, Popescu LM. Platelet-derived growth factor receptor-β-positive telocytes in skeletal muscle interstitium. J Cell Mol Med. 2012;16(4):701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qi G, Lin M, Xu M, Manole CG, Wang X, Zhu T. Telocytes in the human kidney cortex. J Cell Mol Med. 2012;16(12):3116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Corradi LS, Jesus MM, Fochi RA, Vilamaior PS, Justulin Jr LA, Góes RM, Felisbino SL, Taboga SR. Structural and ultrastructural evidence for telocytes in prostate stroma. J Cell Mol Med. 2013;17(3):398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145(4):357–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Díaz-Flores L, Gutiérrez R, Sáez FJ, Díaz-Flores Jr L, Madrid JF. Telocytes in neuromuscular spindles. J Cell Mol Med. 2013;17(4):457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luesma MJ, Gherghiceanu M, Popescu LM. Telocytes and stem cells in limbus and uvea of mouse eye. J Cell Mol Med. 2013;17(8):1016–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matyja A, Gil K, Pasternak A, Sztefko K, Gajda M, Tomaszewski KA, Matyja M, Walocha JA, Kulig J, Thor P. Telocytes: new insight into the pathogenesis of gallstone disease. J Cell Mol Med. 2013;17(6):734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS. Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med. 2013;17(9):1099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao J, Wang F, Liu Z, Yang C. Telocytes in liver: electron microscopic and immunofluorescent evidence. J Cell Mol Med. 2013;17(12):1537–42.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao B, Chen S, Liu J, Yuan Z, Qi X, Qin J, Zheng X, Shen X, Yu Y, Qnin TJ, Chan JY, Cai D. Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat. J Cell Mol Med. 2013;17(1):123–33.

    Article  CAS  PubMed  Google Scholar 

  16. Li L, Lin M, Li L, Wang R, Zhang C, Qi G, Xu M, Rong R, Zhu T. Renal telocytes contribute to the repair of ischemically injured renal tubules. J Cell Mol Med. 2014;18(6):1144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niculite CM, Regalia TM, Gherghiceanu M, Huica R, Surcel M, Ursaciuc C, Leabu M, Popescu LM. Dynamics of telopodes (telocyte prolongations) in cell culture depends on extracellular matrix protein. Mol Cell Biochem. 2015;398(1–2):157–64.

    Article  CAS  PubMed  Google Scholar 

  18. Roatesi I, Radu BM, Cretoiu D, Cretoiu SM. Uterine telocytes: a review of current knowledge. Biol Reprod. 2015;93(1):10.

    Article  PubMed  Google Scholar 

  19. Wright GW, Parsons SP, Loera-Valencia R, Wang XY, Barajas-López C, Huizinga JD. Cholinergic signalling-regulated KV7.5 currents are expressed in colonic ICC-IM but not ICC-MP. Pflugers Arch. 2014;466(9):1805–18.

    Article  CAS  PubMed  Google Scholar 

  20. Lang RJ, Tonta MA, Takano H, Hashitani H. Voltage-operated Ca2+ currents and Ca2+ -activated Cl- currents in single interstitial cells of the guinea pig prostate. BJU Int. 2014;114(3):436–46.

    CAS  PubMed  Google Scholar 

  21. Sheng J, Shim W, Lu J, Lim SY, Ong BH, Lim TS, Liew R, Chua YL, Wong P. Electrophysiology of human cardiac atrial and ventricular telocytes. J Cell Mol Med. 2014;18(2):355–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duquette RA, Shmygol A, Vaillant C, Mobasheri A, Pope M, Burdyga T, Wray S. Vimentin-positive, c-kit-negative interstitial cells in human and rat uterus: a role in pacemaking? Biol Reprod. 2005;72(2):276–83.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenbaum ST, Svalø J, Nielsen K, Larsen T, Jørgensen JC, Bouchelouche P. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium. J Cell Mol Med. 2012;16(12):3001–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shahi PK, Choi S, Zuo DC, Kim MY, Park CG, Kim YD, Lee J, Park KJ, So I, Jun JY. The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal. J Gastroenterol. 2013;49(6):1001–10.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Si X, Huang L, Gong Y, Lu J, Lin L. Role of calcium in activation of hyperpolarization-activated cyclic nucleotide-gated channels caused by cholecystokinin octapeptide in interstitial cells of cajal. Digestion. 2012;85(4):266–75.

    Article  CAS  PubMed  Google Scholar 

  26. McCloskey KD. Calcium currents in interstitial cells from the guinea-pig bladder. BJU Int. 2006;97(6):1338–43.

    Article  CAS  PubMed  Google Scholar 

  27. Cretoiu SM, Radu BM, Banciu A, Banciu DD, Cretoiu D, Ceafalan LC, Popescu LM. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels. Histochem Cell Biol. 2015;143(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  28. Campeanu RA, Radu BM, Cretoiu SM, Banciu DD, Banciu A, Cretoiu D, Popescu LM. Near-infrared low-level laser stimulation of telocytes from human myometrium. Lasers Med Sci. 2014;29(6):1867–74.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Parsons SP, Kunze WA, Huizinga JD. Maxi-channels recorded in situ from ICC and pericytes associated with the mouse myenteric plexus. Am J Physiol Cell Physiol. 2012;302:C1055–69.

    Article  CAS  PubMed  Google Scholar 

  30. Lerche C, Scherer CR, Seebohm G, Derst C, Wei AD, Busch AE, Steinmeyer K. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem. 2000;275:22395–400.

    Article  CAS  PubMed  Google Scholar 

  31. Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ. KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem. 2000;275:24089–95.

    Article  CAS  PubMed  Google Scholar 

  32. Bal M, Zhang J, Zaika O, Hernandez CC, Shapiro MS. Homomeric and heteromeric assembly of KCNQ(Kv7) K+ channels assayed by total internal reflection fluorescence/fluorescence resonance energy transfer and patch clamp analysis. J Biol Chem. 2008;283:30668–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hinescu ME, Popescu LM. Interstitial Cajal-like cells (ICLC) in human atrial myocardium. J Cell Mol Med. 2005;9(4):972–5.

    Article  CAS  PubMed  Google Scholar 

  34. Hinescu ME, Gherghiceanu M, Mandache E, Ciontea SM, Popescu LM. Interstitial Cajal-like cells (ICLC) in atrial myocardium: ultrastructural and immunohistochemical characterization. J Cell Mol Med. 2006;10(1):243–57.

    Article  CAS  PubMed  Google Scholar 

  35. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell. 2000;102:89–97.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D, Namkung Y, Shin HS, Chiamvimonvat N. Functional roles of Ca(v)1.3 (alpha(1D)) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res. 2002;90:981–7.

    Article  CAS  PubMed  Google Scholar 

  37. Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A. 2003;100:5543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mesirca P, Torrente AG, Mangoni ME. Functional role of voltage gated Ca(2+) channels in heart automaticity. Front Physiol. 2015;6:19.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Popescu LM, Manole CG, Gherghiceanu M, Ardelean A, Nicolescu MI, Hinescu ME, Kostin S. Telocytes in human epicardium. J Cell Mol Med. 2010;14(8):2085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leiria LO, Mónica FZ, Carvalho FD, Claudino MA, Franco-Penteado CF, Schenka A, Grant AD, De Nucci G, Antunes E. Functional, morphological and molecular characterization of bladder dysfunction in streptozotocin-induced diabetic mice: evidence of a role for L-type voltage-operated Ca2+ channels. Br J Pharmacol. 2011;163(6):1276–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Balkanci ZD, Pehlivanoğlu B, Bayrak S, Karabulut I, Karaismailoğlu S, Erdem A. The effect of hypercholesterolemia on carbachol-induced contractions of the detrusor smooth muscle in rats: increased role of L-type Ca2+ channels. Naunyn Schmiedeberg’s Arch Pharmacol. 2012;385(11):1141–8.

    Article  CAS  Google Scholar 

  42. Sun YH, Gao X, Tang YJ, Xu CL, Wang LH. Androgens induce increases in intracellular calcium via a G protein-coupled receptor in LNCaP prostate cancer cells. J Androl. 2006;27(5):671–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kim YH, Chung S, Lee YH, Kim EC, Ahn DS. Increase of L-type Ca2+ current by protease-activated receptor 2 activation contributes to augmentation of spontaneous uterine contractility in pregnant rats. Biochem Biophys Res Commun. 2012;418(1):167–72.

    Article  CAS  PubMed  Google Scholar 

  44. Gui P, Chao JT, Wu X, Yang Y, Davis GE, Davis MJ. Coordinated regulation of vascular Ca2+ and K+ channels by integrin signaling. Adv Exp Med Biol. 2010;674:69–79.

    Article  CAS  PubMed  Google Scholar 

  45. Peers C, Scragg JL, Boyle JP, Fearon IM, Taylor SC, Green KN, Webster NJ, Ramsden M, Pearson HA. A central role for ROS in the functional remodelling of L-type Ca2+ channels by hypoxia. Philos Trans R Soc Lond B Biol Sci. 2005;360(1464):2247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Svenningsen P, Andersen K, Thuesen AD, Shin HS, Vanhoutte PM, Skott O, Jensen BL, Hill C, Hansen PB. T-type Ca channels facilitate NO-formation, vasodilatation and NO-mediated modulation of blood pressure. Pflügers Arch. 2014;466:2205–14.

    Article  CAS  PubMed  Google Scholar 

  47. Ball CJ, Wilson DP, Turner SP, Saint DA, Beltrame JF. Heterogeneity of L- and T-channels in the vasculature: rationale for the efficacy of combined L- and T-blockade. Hypertension. 2009;53:654–60.

    Article  CAS  PubMed  Google Scholar 

  48. Thuesen A, Andersen H, Cardel M, Toft A, Walter S, Marcussen Jensen B, Bie P, Hansen P. Differential effect of T-type voltage-gated calcium channel disruption on renal plasma flow and glomerular filtration rate in vivo. Am J Physiol Ren Physiol. 2014;307:F445–52.

    Article  CAS  Google Scholar 

  49. Chen CC, Fan YP, Shin HS, Su CK. Basal sympathetic activity generated in neonatal mouse brainstem-spinal cord preparation requires T-type calcium channel subunit 1H. Exp Physiol. 2011;96:486–94.

    Article  CAS  PubMed  Google Scholar 

  50. Hofmann F, Lacinova L, Klugbauer N. Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol. 1999;139:33–87.

    CAS  PubMed  Google Scholar 

  51. Zhong X, Deng J, He P, You N, Wang Q, Song B, Li L. Reverse mode of the sodium/calcium exchanger subtype 3 in interstitial cells of Cajal from rat bladder. Urology. 2013;82(1):254.e7–12.

    Article  Google Scholar 

  52. Zhu Y, Mucci A, Huizinga JD. Inwardly rectifying chloride channel activity in intestinal pacemaker cells. Am J Physiol Gastrointest Liver Physiol. 2005;288(4):G809–21.

    Article  CAS  PubMed  Google Scholar 

  53. Kim SO, Jeong HS, Jang S, Wu MJ, Park JK, Jiao HY, Jun JY, Park JS. Spontaneous electrical activity of cultured interstitial cells of cajal from mouse urinary bladder. Korean J Physiol Pharmacol. 2013;17(6):531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu Y, Shi C, Deng J, Zhang X, Song B, Li L. Expression and function of muscarinic subtype receptors in bladder interstitial cells of cajal in rats. Urol J. 2014;11(3):1642–7.

    PubMed  Google Scholar 

  55. Ito-Dufros Y, Funakoshi Y, Uehara A, Oishi K. In vitro development of gut-like tissue demonstrating rhythmic contractions from embryonic mouse intestinal cells. Neurogastroenterol Motil. 2007;19(4):288–300.

    Article  CAS  PubMed  Google Scholar 

  56. Kim BJ, Kim HW, Lee GS, Choi S, Jun JY, So I, Kim SJ. Poncirus trifoliate fruit modulates pacemaker activity in interstitial cells of Cajal from the murine small intestine. J Ethnopharmacol. 2013;149(3):668–75.

    Article  PubMed  Google Scholar 

  57. Kim BJ, Kwon YK, Kim E, So I. Effects of histamine on cultured interstitial cells of cajal in murine small intestine. Korean J Physiol Pharmacol. 2013;17(2):149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Drumm BT, Sergeant GP, Hollywood MA, Thornbury KD, McHale NG, Harvey BJ. The role of cAMP dependent protein kinase in modulating spontaneous intracellular Ca2+ waves in interstitial cells of Cajal from the rabbit urethra. Cell Calcium. 2014;56(3):181–7.

    Article  CAS  PubMed  Google Scholar 

  59. Drumm BT, Large RJ, Hollywood MA, Thornbury KD, Baker SA, Harvey BJ, McHale NG, Sergeant GP. The role of Ca(2+) influx in spontaneous Ca(2+) wave propagation in interstitial cells of Cajal from the rabbit urethra. J Physiol. 2015;593(15):3333–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med. 2005;9(2):479–523.

    Article  CAS  PubMed  Google Scholar 

  61. Ciontea SM, Radu E, Regalia T, Ceafalan L, Cretoiu D, Gherghiceanu M, Braga RI, Malincenco M, Zagrean L, Hinescu ME, Popescu LM. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med. 2005;9(2):407–20.

    Article  PubMed  Google Scholar 

  62. McCloskey KD. Interstitial cells in the urinary bladder—localisation and function. Neurourol Urodyn. 2010;29:82–7.

    Article  PubMed  Google Scholar 

  63. Nguyen DT, Dey A, Lang RJ, Ventura S, Exintaris B. Contractility and pacemaker cells in the prostate gland. J Urol. 2011;185:347–51.

    Article  PubMed  Google Scholar 

  64. Hashitani H, Suzuki H. Identification of interstitial cells of Cajal in corporal tissues of the guinea-pig penis. Br J Pharmacol. 2004;141:199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Drumm BT, Koh SD, Andersson KE, Ward SM. Calcium signalling in Cajal-like interstitial cells of the lower urinary tract. Nat Rev Urol. 2014;11(10):555–64.

    CAS  PubMed  Google Scholar 

  66. Deng J, He P, Zhong X, Wang Q, Li L, Song B. Identification of T‐type calcium channels in the interstitial cells of Cajal in rat bladder. Urology. 2012;80(6):1389.e1–e7.

    Article  Google Scholar 

  67. Allix S, Reyes-Gomez E, Aubin-Houzelstein G, Noël D, Tiret L, Panthier JJ, Bernex F. Uterine contractions depend on KIT-positive interstitial cells in the mouse: genetic and pharmacological evidence. Biol Reprod. 2008;79(3):510–7.

    Article  CAS  PubMed  Google Scholar 

  68. Thomsen L, Robinson TL, Lee JC, Farraway LA, Hughes MJ, Andrews DW, Huizinga JD. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med. 1998;4:848–51.

    Article  CAS  PubMed  Google Scholar 

  69. Smith TK, Reed JB, Sanders KM. Interactions of two electrical pacemakers in muscularis of canine proximal colon. Am J Physiol. 1987;252:C290–9.

    CAS  PubMed  Google Scholar 

  70. Liu LW, Huizinga JD. Electrical coupling of circular muscle to longitudinal muscle and interstitial cells of Cajal in canine colon. J Physiol. 1993;470:445–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rae MG, Fleming N, McGregor DB, Sanders KM, Keef KD. Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J Physiol. 1998;510(Pt1):309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pluja L, Alberti E, Fernandez E, Mikkelsen HB, Thuneberg L, Jiminez M. Evidence supporting presence of two pacemakers in rat colon. Am J Physiol Gastrointest Liver Physiol. 2001;281:G255–66.

    CAS  PubMed  Google Scholar 

  73. Yoneda S, Fukui H, Takaki M. Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon. Neurogastroenterol Motil. 2004;16:621–7.

    Article  CAS  PubMed  Google Scholar 

  74. Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res. 2006;98(11):1422–30.

    Google Scholar 

  75. Marger L, Mesirca P, Alig J, Torrente A, Dubel S, Engeland B, Kanani S, Fontanaud P, Striessnig J, Shin HS, Isbrandt D, Ehmke H, Nargeot J, Mangoni ME. Functional roles of Ca(v)1.3, Ca(v)3.1 and HCN channels in automaticity of mouse atrioventricular cells: insights into the atrioventricular pacemaker mechanism. Channels (Austin). 2011;5:251–61.

    Article  CAS  Google Scholar 

  76. Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS. Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med. 2009;13(5):866–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kostin S, Popescu LM. A distinct type of cell in myocardium: interstitial Cajal-like cells (ICLCs). J Cell Mol Med. 2009;13(2):295–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Torrente AG, Zhang R, Zaini A, Giani JF, Kang J, Lamp ST, Philipson KD, Goldhaber JI. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. Proc Natl Acad Sci U S A. 2015;112(31):9769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yamamura H, Cole WC, Kita S, Hotta S, Murata H, Suzuki Y, Ohya S, Iwamoto T, Imaizumi Y. Overactive bladder mediated by accelerated Ca2+ influx mode of Na+/Ca2+ exchanger in smooth muscle. Am J Physiol Cell Physiol. 2013;305(3):C299–308.

    Article  CAS  PubMed  Google Scholar 

  80. Iurlo A, Orsi E, Cattaneo D, Resi V, Bucelli C, Orofino N, Sciumè M, Elena C, Grancini V, Consonni D, Orlandi EM, Cortelezzi A. Effects of first- and second-generation tyrosine kinase inhibitor therapy on glucose and lipid metabolism in chronic myeloid leukemia patients: a real clinical problem? Oncotarget. 2015;6(32):33944–51.

    PubMed  PubMed Central  Google Scholar 

  81. Lam M, Dey A, Lang RJ, Exintaris B. Effects of imatinib mesylate on the spontaneous activity generated by the guinea-pig prostate. BJU Int. 2013;112(4):E398–405.

    Article  CAS  PubMed  Google Scholar 

  82. Cretoiu SM, Simionescu AA, Caravia L, Curici A, Cretoiu D, Popescu LM. Complex effects of imatinib on spontaneous and oxytocin-induced contractions in human non-pregnant myometrium. Acta Physiol Hung. 2011;98(3):329–38.

    Article  CAS  PubMed  Google Scholar 

  83. Wu X, Morgan KG, Jones CJ, Tribe RM, Taggart MJ. Myometrial mechanoadaptation during pregnancy: implications for smooth muscle plasticity and remodelling. J Cell Mol Med. 2008;12(4):1360–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jansson T, Powell TL, Illsley NP. Gestational development of water and non-electrolyte permeability of human syncytiotrophoblast plasma membranes. Placenta. 1999;20(2–3):155–60.

    Article  CAS  PubMed  Google Scholar 

  85. Whiting KP, Restall CJ, Brain PF. Steroid hormone-induced effects on membrane fluidity and their potential roles in non-genomic mechanisms. Life Sci. 2000;67(7):743–57.

    Article  CAS  PubMed  Google Scholar 

  86. Manole CG, Gherghiceanu M, Simionescu O. Telocyte dynamics in psoriasis. J Cell Mol Med. 2015;19(7):1504–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Manole CG, Cismaşiu V, Gherghiceanu M, Popescu LM. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med. 2011;15(11):2284–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alunno A, Ibba-Manneschi L, Bistoni O, Rosa I, Caterbi S, Gerli R, Manetti M. Telocytes in minor salivary glands of primary Sjögren’s syndrome: association with the extent of inflammation and ectopic lymphoid neogenesis. J Cell Mol Med. 2015;19(7):1689–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bosco C, Díaz E, Gutiérrez R, González J, Parra-Cordero M, Rodrigo R, Barja P. A putative role for telocytes in placental barrier impairment during preeclampsia. Med Hypotheses. 2015;84(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  90. Manetti M, Rosa I, Messerini L, Ibba-Manneschi L. Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis. J Cell Mol Med. 2015;19(1):62–73.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support received through the program Partnerships in priority areas – PN II, UEFISCDI, Project No. 82/2012. B M Radu has a PhD fellowship from the Italian Ministry of Research (MIUR). DD Banciu is financed by the Sectoral Operational Programme Human Resources Development (SOPHRD), the European Social Fund, and the Romanian Government under the contract number POSDRU/159/1.5/S/141531.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Mihaela Radu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Banciu, D.D., Banciu, A., Radu, B.M. (2016). Electrophysiological Features of Telocytes. In: Wang, X., Cretoiu, D. (eds) Telocytes. Advances in Experimental Medicine and Biology, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-10-1061-3_19

Download citation

Publish with us

Policies and ethics