Skip to main content

Transcriptome Analyses to Investigate the Pathogenesis of RNA Splicing Factor Retinitis Pigmentosa

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

RNA-splicing factor retinitis pigmentosa (RP) is caused by mutations in components of the spliceosome. RP is an inherited blinding disorder characterized by late-onset retinal degeneration. Currently, mutations in five genes that encode components of the spliceosome have been identified to cause autosomal dominant RP. These are the pre-mRNA processing factors 3, 8, and 31 (PRPF3, 8, and 31), RP9, and SNRNP200. It is unknown how mutations in these ubiquitously expressed genes lead to retina-specific disease. It is hypothesized that mutations in these genes lead to aberrant splicing of pre-mRNA, which in turn causes retinal degeneration. To fully investigate this hypothesis requires the ability to accurately interrogate the transcriptomes of the affected tissue. The recent development of next-generation sequencing-based RNA sequencing (RNA-seq) makes these types of studies possible. This chapter will focus on the RNA splicing factor forms of RP and the application of RNA-seq to study the pathogenesis of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25:195-203

    Article  CAS  Google Scholar 

  • Beggs JD, Teigelkamp S, Newman AJ (1995) The role of PRP8 protein in nuclear pre-mRNA splicing in yeast. J Cell Sci Suppl 19:101–105

    PubMed  CAS  Google Scholar 

  • Blencowe BJ, Ahmad S, Lee LJ (2009) Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev 23:1379–1386

    Article  PubMed  CAS  Google Scholar 

  • Buchholz DE, Hikita ST, Rowland TJ et al (2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27:2427–2434

    Article  PubMed  CAS  Google Scholar 

  • Bult CJ, Eppig JT, Kadin JA et al (2008) The Mouse Genome Database (MGD): Mouse biology and model systems. Nuc Acid Res 36:D724–D728

    Article  CAS  Google Scholar 

  • Bunker CH, Berson EL, Bromley WC et al (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97:357–365

    PubMed  CAS  Google Scholar 

  • Carr AJ, Vugler AA, Hikita ST et al (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE 4:e8152

    Article  PubMed  Google Scholar 

  • Farkas MH, Bujakowska K, Krishan, A et al (2010) Characterization of aberrant splicing by next generation high-throughput RNA-seq in mice with targeted mutations in Prpf3, Prpf8, and Prpf31 Invest Ophthalmol Vis Sci 51:ARVO E-Abstract 3667

    Google Scholar 

  • Grainger RJ, Beggs JD (2005) Prp8 protein: At the heart of the spliceosome. RNA 11:533–557

    Article  PubMed  CAS  Google Scholar 

  • Graziotto JJ, Farkas MH, Bujakowska KM et al (2011) Three gene targeted mouse models of RNA splicing factor RP show late onset RPE and retinal degeneration. Invest Ophthalmol Vis Sci 52(1):190–198

    Google Scholar 

  • Grondahl J (1987) Estimation of prognosis and prevalence of retinitis pigmentosa and Usher ­syndrome in Norway. Clin Genet 31:255–264

    PubMed  CAS  Google Scholar 

  • Haim M, Holm NV, Rosenberg T (1992) Prevalence of retinitis pigmentosa and allied disorders in Denmark. I Main results. Acta Ophthalmol (Copenh) 70:178–186

    Article  CAS  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ (2002) BLAT – the BLAST-like alignment tool. Genome Res 12:656–664

    PubMed  CAS  Google Scholar 

  • Langmead B, Hansen K, Leek J (2010) Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol 11:R83

    Article  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  Google Scholar 

  • Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform 11:473–483

    Article  PubMed  CAS  Google Scholar 

  • Maita H, Kitaura H, Ariga H, Iguchi-Ariga SM (2005) Association of PAP-1 and Prp3p, the products of causative genes of dominant retinitis pigmentosa, in the tri-snRNP complex. Exp Cell Res 302:61–68

    Article  PubMed  CAS  Google Scholar 

  • McKie AB, McHale JC, Keen TJ et al (2001) Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 10:1555–1562

    Article  PubMed  CAS  Google Scholar 

  • McPherson JD (2009) Next-generation gap. Nat Meth 6:S2–S5

    Article  CAS  Google Scholar 

  • Ozsolak F, Goren A, Gymrek M et al (2010) Digital transcriptome profiling from attomole-level RNA samples. Genome Res 20:519–525

    Article  PubMed  CAS  Google Scholar 

  • RetNet (2009) RetNet Web site address. http://www.sph.uth.tmc.edu/Retnet/

  • Shendure J (2008) The beginning of the end for microarrays? Nat Meth 5:585–587

    Article  CAS  Google Scholar 

  • Simon SA, Zhai J, Nandety RS et al (2009) Short-read sequencing technologies for transcriptional analyses. Annu Rev Plant Biol 60:305–333

    Article  PubMed  CAS  Google Scholar 

  • Teng X, Xiao H (2009) Perspectives of DNA microarray and next-generation DNA sequencing technologies. Sci C Life Sci 52:7–16

    Article  CAS  Google Scholar 

  • Vithana EN, Abu-Safieh L, Allen MJ et al (2001) A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell 8:375–381

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Hu L, Ma K, et al (2006) Prevalence of retinitis pigmentosa in urban and rural adult Chinese: The Beijing Eye Study. Eur J Ophthalmol 16:865–866

    PubMed  CAS  Google Scholar 

  • Yu J, Hu K, Smuga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Lotti F, Dittmar K et al (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133:585–600

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Bellur DL, Lu S et al (2009) Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet 85:617–627

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ruth-Kirschstein National Research Service Award, Foundation Fighting Blindness, Penn Genome Frontiers Institute, Rosanne Silbermann Foundation, F.M. Kirby Foundation, and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Pierce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Farkas, M.H., Grant, G.R., Pierce, E.A. (2012). Transcriptome Analyses to Investigate the Pathogenesis of RNA Splicing Factor Retinitis Pigmentosa. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_65

Download citation

Publish with us

Policies and ethics