Skip to main content
Log in

Solution-processible organic-inorganic hybrid bipolar field-effect transistors

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Organic-inorganic hybrid bipolar field-effect transistors (HBFETs) comprising a layer of p-type organic poly(3-hexylthiophene) (P3HT) separated from a parallel layer of n-type inorganic zinc oxide (ZnO) were demonstrated by solution processing. In order to achieve balanced hole and electron mobilities, we initially optimized the hole-transporting P3HT channel by the addition of the polar non-solvent acetonitrile (AN) to P3HT solutions in chloroform, which induced a selfassembled nano-fibril morphology and an enhancement of hole mobilities. For the electron channel, a wet-chemically-prepared ZnO layer was optimized by thermal annealing. Unipolar P3HT FET with 5% AN exhibited the highest hole mobility of 7.20 × 10−2 cm2V−1s−1 while the highest electron mobility (3.64 × 10−2 cm2V−1s−1) was observed in unipolar ZnO FETs annealed at 200°C. The organic-inorganic HBFETs consisting of the P3HT layer with 5% AN and ZnO annealed at 200°C exhibited well-balanced hole and electron mobilities of 1.94 × 10−2 cm2V−1s−1 and 1.98 × 10−2 cm2V−1s−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B.-H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf and T. M. Klapwijk, Nat. Mater. 2, 678 (2003).

    Article  ADS  Google Scholar 

  2. J. Zaumseil and H. Sirringhaus, Chem. Rev. 107, 1296 (2007).

    Article  Google Scholar 

  3. J. Fan, J. D. Yeun, M. Wang, J. Seifter, J.-H. Seo, A. R. Mohebbi, D. Zakhidov, A. Heeger and F. Wudl, Adv. Mater. 24, 2186 (2012).

    Article  Google Scholar 

  4. L.-K. Mao, J.-C. Hwang and Y.-L. Chueh, Org. Electron. 15, 2400 (2014).

    Article  Google Scholar 

  5. P. Sonar, T. R. B. Foong and A. Dodabalapur, Phys. Chem. Chem. Phys. 16, 4275 (2014).

    Article  Google Scholar 

  6. S. Cho, J. Yuen, J. Y. Kim, K. Lee, A. J. Heeger and S. Lee, Appl. Phys. Lett. 92, 063505 (2008).

    Article  ADS  Google Scholar 

  7. L. Qiu, J. A. Lim, X. Wang, W. H. Lee, M. Hwang and K. Cho, Adv. Mater. 20, 1141 (2008).

    Article  Google Scholar 

  8. J. K. Park, B. Walker and J. H. Seo, ACS Appl. Mater. Interfaces 5, 4575 (2013).

    Article  Google Scholar 

  9. S. Cho, J. Yuen, J. Kim, K. Lee and A. J. Heeger, Appl. Phys. Lett. 89, 153505 (2006).

    Article  ADS  Google Scholar 

  10. J. S. Moon, C. Takacs, S. Cho, R. Coffin, H. Kim, G. Bazan and A. J. Heeger, Nano Lett. 10, 4005 (2010).

    Article  ADS  Google Scholar 

  11. J. H. Seo et al., Appl. Phys. Lett. 89, 163505 (2006).

    Article  ADS  Google Scholar 

  12. F. Fleischhaker, V. Wloka and I. Henning, J. Mater. Chem. 20, 6622 (2010).

    Article  Google Scholar 

  13. B. S. Ong, C. Li, Y. Li, Y. Wu and R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007).

    Article  Google Scholar 

  14. B. Sun and H. Sirringhaus, Nano Lett. 5, 2408 (2005).

    Article  ADS  Google Scholar 

  15. B. N. Pal, P. Trottman, J. Sun and H. Katz, Adv. Funct. Mater. 18, 1832 (2008).

    Article  Google Scholar 

  16. Y. K. Park, H. S. Choi, J.-H. Kim, J.-H. Kim and Y.-B. Hahn, Nanotechnology 22, 185310 (2011).

    Article  ADS  Google Scholar 

  17. J. Goldberger, D. Sirbuly, M. Law and P. Yang, J. Phys. Chem. B 109, 9 (2005).

    Article  Google Scholar 

  18. A. N. Aleshin, I. P. Shcherbakov, V. N. Petrov and A. N. Titkov, Org. Electron. 12, 1285 (2011).

    Article  Google Scholar 

  19. A. K. Diallo, M. Gaceur, N. Berton, O. Margeat, J. Ackermann and C. Videlot-Ackermann, Superlattices Microstruct. 58, 144 (2013).

    Article  ADS  Google Scholar 

  20. Y. Zhou, S.-T. Han, L. Zhou, Y. Yan, L.-B. Huang, J. Huang and V. A. L. Roy, J. Mater. Chem. C 1, 7073 (2013).

    Article  Google Scholar 

  21. J.-F. Chang, B. Sun, D. Breiby, M. Nielsen, T. Solling, M. Giles, I. McCulloch and H. Sirringhaus, Chem. Mater. 16, 4772 (2004).

    Article  Google Scholar 

  22. Y. D. Park, H. S. Lee, Y. J. Choi, D. Kwak, J. H. Cho, S. Lee and K. Cho, Adv. Funct. Mater. 19, 1200 (2009).

    Article  Google Scholar 

  23. N. Kiriy et al., Nano Lett. 3, 707 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinuk Cho.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, G.J., Kim, K.D., Cho, S. et al. Solution-processible organic-inorganic hybrid bipolar field-effect transistors. Journal of the Korean Physical Society 68, 889–895 (2016). https://doi.org/10.3938/jkps.68.889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.889

Keywords

Navigation