Skip to main content
Log in

Sensorimotor adaptation modifies action effects on sensory binding

  • Published:
Attention, Perception, & Psychophysics Aims and scope Submit manuscript

Abstract

Previous studies have shown that performing a motor action toward a target decreases the perceptual asynchrony observed in a temporal order judgment (TOJ) of a change in the target’s visual attributes. We examined the temporal limit of this effect and whether this temporal limit can be extended through sensorimotor adaptation. Participants performed a TOJ task related to changes of the position and color of a visual stimulus in a perceptual and a motor task. A fixed change (color or position) occurred 250 or 500 ms following an auditory cue (perceptual task) or the end of a manual reaching action (motor task), whereas the variable change (position or color) occurred randomly within a time window of ±200 ms locked to the fixed change. The points of subjective simultaneity (PSSs) revealed that performing a voluntary action decreased the temporal asynchrony observed in the perceptual task, but only in the 250-ms delay condition. In Experiment 2, the fixed change occurred 1 s after either an auditory cue or the end of a manual reaching action, and the variable change occurred either simultaneously (new sensorimotor contingencies, 60 % of trials) or within a time window of ±200 ms (40 % of trials). The PSSs revealed that temporal asynchrony decreased in the motor task, but only after adaptation to the 1-s delay. Taken together, these data show that voluntary motor action affects the temporal binding of visual attributes for a period of less than 500 ms after the end of the action. Sensorimotor adaptation can nevertheless extend this time interval, at least up to 1 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We thank one of the reviewers for having raised the possible role of eye movements in the results obtained in the perceptual and motor tasks.

References

  • Arnold, D. H., Nancarrow, K., & Yarrow, K. (2012). The critical events for motor–sensory temporal recalibration. Frontiers in Human Neuroscience, 6, 235. doi:10.3389/fnhum.2012.00235

    Article  PubMed Central  PubMed  Google Scholar 

  • Aymoz, C., & Viviani, P. (2004). Perceptual asynchronies for biological and non-biological visual events. Vision Research, 44, 1547–1563. doi:10.1016/j.visres.2003.12.011

    Article  PubMed  Google Scholar 

  • Blakemore, S. J., Frith, C. D., & Wolpert, D. M. (1999). Spatio-temporal prediction modulates the perception of self-produced stimuli. Journal of Cognitive Neuroscience, 11, 551–559.

    Article  PubMed  Google Scholar 

  • Blakemore, S. J., Wolpert, D., & Frith, C. (2000). Why can’t you tickle yourself? NeuroReport, 11, R11–R16.

    Article  PubMed  Google Scholar 

  • Casarotti, M., Lisi, M., Umiltà, C., & Zorzi, M. (2012). Paying attention through eye movements: A computational investigation of the premotor theory of spatial attention. Journal of Cognitive Neuroscience, 24, 1519–1531.

    Article  PubMed  Google Scholar 

  • Cleeremans, A. (2008). Consciousness: The radical plasticity thesis. Progress in Brain Research, 168, 19–33.

    Article  PubMed  Google Scholar 

  • Corveleyn, X., & Coello, Y. (2014). Effet de l’action motrice sur les asynchronies perceptives [Role of motor action on perceptual asynchronies]. Psychologie Française, 59, 137–148. doi:10.1016/j.psfr.2013.07.004

    Article  Google Scholar 

  • Corveleyn, X., López-Moliner, J., & Coello, Y. (2012). Motor action reduces temporal asynchrony between perceived visual changes. Journal of Vision, 12(11):20, 1–16.

    Article  PubMed  Google Scholar 

  • Engel, A. K., Fries, P., König, P., Brecht, M., & Singer, W. (1999). Temporal binding, binocular rivalry, and consciousness. Consciousness and Cognition, 8, 128–151.

    Article  PubMed  Google Scholar 

  • Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5, 16–25.

    Article  PubMed  Google Scholar 

  • Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. Journal of Neuroscience, 17, 1519–1528.

    PubMed  Google Scholar 

  • Fougnie, D., & Marois, R. (2009). Attentive tracking disrupts feature binding in visual working memory. Visual Cognition, 17, 48–66.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gauch, A., & Kerzel, D. (2008). Perceptual asynchronies between color and motion at the onset of motion and along the motion trajectory. Perception & Psychophysics, 70, 1092–1103. doi:10.3758/PP.70.6.1092

    Article  Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25. doi:10.1016/0166-2236(92)90344-8

    Article  PubMed  Google Scholar 

  • Guenther, F. H., & Barreca, D. M. (1997). Neural models for flexible control of redundant systems. Advances in Psychology, 119, 383–421.

    Article  Google Scholar 

  • Haggard, P. (2005). Conscious intention and motor cognition. Trends in Cognitive Sciences, 9, 290–295.

    Article  PubMed  Google Scholar 

  • Haggard, P., & Clark, S. (2003). Intentional action: Conscious experience and neural prediction. Consciousness and Cognition, 12, 695–707.

    Article  PubMed  Google Scholar 

  • Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5, 382–385.

    Article  PubMed  Google Scholar 

  • Hanson, J. V. M., Heron, J., & Whitaker, D. (2008). Recalibration of perceived time across sensory modalities. Experimental Brain Research, 185, 347–352. doi:10.1007/s00221-008-1282-3

    Article  PubMed  Google Scholar 

  • Jeannerod, M. (1988). The neural and behavioural organization of goal-directed movements. Oxford, UK: Oxford University Press, Clarendon Press.

    Google Scholar 

  • Jeannerod, M. (2006). Motor cognition: What actions tell the self: What actions tell the self. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307–354.

    Article  Google Scholar 

  • Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175–219. doi:10.1016/0010-0285(92)90007-O

    Article  PubMed  Google Scholar 

  • Keizer, A. W., Colzato, L. S., & Hommel, B. (2008). Integrating faces, houses, motion, and action: Spontaneous binding across ventral and dorsal processing streams. Acta Psychologica, 127, 177–185. doi:10.1016/j.actpsy.2007.04.003

    Article  PubMed  Google Scholar 

  • López-Moliner, J., & Linares, D. (2006). The flash-lag effect is reduced when the flash is perceived as a sensory consequence of our action. Vision Research, 46, 2122–2129.

    Article  PubMed  Google Scholar 

  • von der Malsburg, C. (1995). Binding in models of perception and brain function. Current Opinion in Neurobiology, 5, 520–526.

    Article  PubMed  Google Scholar 

  • Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9, 1265–1279.

    Article  PubMed  Google Scholar 

  • Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46, 774–785. doi:10.1016/j.neuropsychologia.2007.10.005

    Article  PubMed  Google Scholar 

  • Moore, J. W., & Obhi, S. S. (2012). Intentional binding and the sense of agency: A review. Consciousness and Cognition, 21, 546–561.

    Article  PubMed  Google Scholar 

  • Moutoussis, K., & Zeki, S. (1997). A direct demonstration of perceptual asynchrony in vision. Proceedings of the Royal Society B, 264, 393–399.

    Article  PubMed Central  PubMed  Google Scholar 

  • Naue, N., Rach, S., Strüber, D., Huster, R. J., Zaehle, T., Körner, U., & Herrmann, C. S. (2011). Auditory event-related response in visual cortex modulates subsequent visual responses in humans. Journal of Neuroscience, 31, 7729–7736.

    Article  PubMed  Google Scholar 

  • Nishida, S., & Johnston, A. (2002). Marker correspondence, not processing latency, determines temporal binding of visual attributes. Current Biology, 12, 359–368.

    Article  PubMed  Google Scholar 

  • Nowak, L. G., & Bullier, J. (1997). The timing of information transfer in the visual system. In K. Rockland, J. H. Kaas, & A. Peters (Eds.), Cerebral cortex: Vol. 12. Extrastriate cortex in primates (pp. 205–241). New York, NY: Plenum Press. doi:10.1007/978-1-4757-9625-4_5

    Chapter  Google Scholar 

  • O’Reilly, R. C., Busby, R. S., & Soto, R. (2003). Three forms of binding and their neural substrates: alternatives to temporal synchrony. In A. Cleeremans (Ed.), The unity of consciousness: Binding, integration, and dissociation (pp. 168–192). Oxford, UK: Oxford University Press.

    Chapter  Google Scholar 

  • Parsons, B. D., Novich, S. D., & Eagleman, D. M. (2013). Motor–sensory recalibration modulates perceived simultaneity of cross-modal events at different distances. Frontiers in Psychology, 4, 46. doi:10.3389/fpsyg.2013.00046

    Article  PubMed Central  PubMed  Google Scholar 

  • Pisella, L., Arzi, M., & Rossetti, Y. (1998). The timing of color and location processing in the motor context. Experimental Brain Research, 121, 270–276.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Riggio, L., Dascola, I., & Umiltà, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31–40. doi:10.1016/0028-3932(87)90041-8

    Article  PubMed  Google Scholar 

  • Roskies, A. L. (1999). The binding problem. Neuron, 24, 7–9.

    Article  PubMed  Google Scholar 

  • Schmidt, T. (2009). Perception: The binding problem and the coherence of perception. In Encyclopedia of consciousness (pp. 147–158). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Schroeder, C. E., Lakatos, P., Kajikawa, Y., Partan, S., & Puce, A. (2008). Neuronal oscillations and visual amplification of speech. Trends in Cognitive Sciences, 12, 106–113.

    Article  PubMed Central  PubMed  Google Scholar 

  • Senkowski, D., Schneider, T. R., Foxe, J. J., & Engel, A. K. (2008). Crossmodal binding through neural coherence: Implications for multisensory processing. Trends in Neurosciences, 31, 401–409. doi:10.1016/j.tins.2008.05.002

    Article  PubMed  Google Scholar 

  • Stetson, C., Cui, X., Montague, P. R., & Eagleman, D. M. (2006). Motor–sensory recalibration leads to an illusory reversal of action and sensation. Neuron, 51, 651–659.

    Article  PubMed  Google Scholar 

  • Tanaka, Y., & Shimojo, S. (1996). Location vs. feature: Reaction time reveals dissociation between two visual functions. Vision Research, 36, 2125–2140.

    Article  PubMed  Google Scholar 

  • Tanné, J., Boussaoud, D., Boyer-Zeller, N., & Rouiller, E. M. (1995). Direct visual pathways for reaching movements in the macaque monkey. NeuroReport, 7, 267–272.

    Article  PubMed  Google Scholar 

  • Treisman, A. (1999). Solutions to the binding problem: Progress through controversy and convergence. Neuron, 24, 105–125.

    Article  PubMed  Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136. doi:10.1016/0010-0285(80)90005-5

    Article  PubMed  Google Scholar 

  • Viviani, P., & Aymoz, C. (2001). Colour, form, and movement are not perceived simultaneously. Vision Research, 41, 2909–2918.

    Article  PubMed  Google Scholar 

  • Wenke, D., & Haggard, P. (2009). How voluntary actions modulate time perception. Experimental Brain Research, 196, 311–318.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1, 209–216.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269, 1880–1882.

    Article  PubMed  Google Scholar 

  • Yarrow, K., Haggard, P., Heal, R., Brown, P., & Rothwell, J. C. (2001). Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature, 414, 302–305.

    Article  PubMed  Google Scholar 

Download references

Author note

This study was supported by a grant from the French Research Agency ANR-11-EQPX-0023, FEDER SCV-IRDIVE, and University Lille 3. The authors are grateful to Brendan Cameron for his helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Coello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corveleyn, X., López-Moliner, J. & Coello, Y. Sensorimotor adaptation modifies action effects on sensory binding. Atten Percept Psychophys 77, 626–637 (2015). https://doi.org/10.3758/s13414-014-0772-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13414-014-0772-6

Keywords

Navigation