Skip to main content
Log in

Thermodynamic model of hardness: Particular case of boron-rich solids

  • Theory of Hardness and Superhard Materials
  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

A number of successful theoretical models of hardness have been developed recently. A thermodynamic model of hardness, which supposes the intrinsic character of correlation between hardness and thermodynamic properties of solids, allows one to predict hardness of known or even hypothetical solids from the data on Gibbs energy of atomization of the elements, which implicitly determine the energy density per chemical bonding. The only structural data needed is the coordination number of the atoms in a lattice. Using this approach, the hardness of known and hypothetical polymorphs of pure boron and a number of boron-rich solids has been calculated. The thermodynamic interpretation of the bonding energy allows one to predict the hardness as a function of thermodynamic parameters. In particular, the excellent agreement between experimental and calculated values has been observed not only for the room-temperature values of the Vickers hardness of stoichiometric compounds, but also for its temperature and concentration dependencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurakevych, O.O., Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review), J. Superhard Mater., 2009, vol. 31, no. 3, pp. 139–157.

    Article  Google Scholar 

  2. Brazhkin, V.V., Lyapin, A.G., Hemley, R.J., Harder than Diamond: Dreams and Reality, Philosoph. Mag. A, 2002, vol. 82, no. 2, pp. 231–253.

    CAS  Google Scholar 

  3. Gao, F.M., He, J.L., Wu, E.D., et al., Hardness of Covalent Crystals, Phys. Rev. Lett., 2003, vol. 91, no. 1, pp. 015502 1–015502 4.

    Article  Google Scholar 

  4. Simunek, A. and Vackar, J., Hardness of Covalent and Ionic Crystals: First-Principle Calculations, Phys. Rev. Lett., 2006, vol. 96, no. 8, pp. 085501 1–085501 4.

    Article  Google Scholar 

  5. Teter, D.M. and Hemley, R.J., Low-Compressibility Carbon Nitrides, Science, 1996, vol. 271, no. 5245, pp. 53–55.

    Article  CAS  Google Scholar 

  6. Jhi, S.-H., Louie, S.G., Cohen, M.L., et al., Vacancy Hardening and Softening in Transition Metal Carbides and Nitrides, Phys. Rev. Lett., 2001, vol. 86, no. 15, pp. 3348.

    Article  CAS  Google Scholar 

  7. Gilman, J.J., Why Silicon Is Hard, Science, 1993, vol. 261, no. 5127, pp. 1436–1439.

    Article  CAS  Google Scholar 

  8. Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., Thermodynamic Aspects of Materials’ Hardness: Prediction of Novel Superhard High-Pressure Phases, High Press. Res., 2008, vol. 28, no. 4, pp. 531–537.

    Article  CAS  Google Scholar 

  9. Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., The Interrelation between Hardness and Compressibility of Substances and Their Structure and Thermodynamic Properties, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 368–378.

    Article  Google Scholar 

  10. Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., Hardness of Materials at High Temperature and High Pressure, Phylosoph. Mag., 2009, vol. 89, no. 25, pp. 2117–2127.

    Article  CAS  Google Scholar 

  11. Novikov N., V. and Dub, S.N., Fracture Toughness of Diamond Single Crystals, J. Hard Mater., 1991, vol. 2, pp. 3–11.

    CAS  Google Scholar 

  12. Sumiya, H., Toda, N., and Satoh, S., Mechanical Properties of Synthetic Type IIa Diamond Crystal, Diamond Relat. Mater., 1997, vol. 6, no. 12, pp. 1841–1846.

    Article  CAS  Google Scholar 

  13. Solozhenko, V.L., Dub, S.N., and Novikov, N.V., Mechanical Properties of Cubic BC2N, a New Superhard Phase, ibid., 2001, vol. 10, no. 12, pp. 2228–2231.

    Article  CAS  Google Scholar 

  14. Sintez sverkhtverdykh materialov (Synthesis of Superhard Materials), 3 vol., vol. 1. Synthetic Superhard Materials, Novikov, N.V., Bondarev, E.K., Vishnevskii A.S., et al., Eds., Kiev: Naukova Dumka, 1986.

    Google Scholar 

  15. Emsley, J., The Elements, Oxford: Clarendon press, 1991.

    Google Scholar 

  16. Liang, Q., Yan, C.-S., Meng, Y., et al., Enhancing the Mechanical Properties of Single-Crystal CVD Diamond, J. Phys.: Cond. Matter., 2009, vol. 21, no. 36, pp. 364215.

    Article  Google Scholar 

  17. Mukhanov, V.A., Kurakevich, O.O., and Solozhenko, V.L., On the Hardness of Boron (III) Oxide, J. Superhard Mater., 2008, vol. 30, no. 1, pp. 71–72.

    Google Scholar 

  18. Solozhenko, V.L., Kurakevych, O.O., Andrault, D., et al., Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamond-Like BC5, Phys. Rev. Lett., 2009, vol. 102, no. 6, pp. 015506.

    Article  Google Scholar 

  19. Solozhenko, V.L., Kurakevych, O.O., and Oganov, A.R., On Hardness of Gamma Boron, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 428–429.

    Article  Google Scholar 

  20. Haines, J. and Leger, J. M., The Search for Superhard Materials: a New Approach, ibid., 1998, vol. 20, no. 2, pp. 3–10.

    Google Scholar 

  21. Rizzo, H.F., Simmons, W.C., and Bielstein, H.O., The Existence and Formation of the Solid B6O, J. Electrochem. Soc., 1962, vol. 109, no. 11, pp. 1079–1082

    Article  Google Scholar 

  22. Lowther, J.E., Potential Superhard Phases and the Stability of Diamond-Like Boron-Carbon Structures, J. Phys.: Cond. Matter., 2005, vol. 17, no. 21, pp. 3221–3229.

    Article  CAS  Google Scholar 

  23. Solozhenko, V.L., Kurakevych, O.O., Andrault, D., et al., Erratum: Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamond-Like BC5, Phys. Rev. Lett., 2009, vol. 102, no. 17, pp. 179901.

    Article  Google Scholar 

  24. Trim, D.L., Design of Industrial Catalysts, Chemical Engineering Monographs, Amsterdam: Elsevier, 1980.

    Google Scholar 

  25. Gusarov, V.V., Statika i dinamika polikristallicheskikh system na osnove tugoplavkikh oksidov (Statics and Dynamics of Polycrystalline Systems Based on Refractory Oxides), St. Petersbourg: St. Petersbourg State University, 1996, p. 44.

    Google Scholar 

  26. Nellis, W.J., Systematics of Compression of Hard Materials, J. Phys.: Conf. Ser., 2008, vol. 121, no. 6, pp. 062005 (5 p.)

    Article  Google Scholar 

  27. Mao, W.L., Mao, H.K., Eng, P.J., et al., Bonding Changes in Compressed Superhard Graphite, Science, 2003, vol. 302, no. 5644, pp. 425–427.

    Article  CAS  Google Scholar 

  28. Li, Q., Ma, Y., Oganov, A.R., et al., Superhard Monoclinic Polymorph of Carbon, Phys. Rev. Lett., 2009, vol. 102, no. 17, pp. 175506.

    Article  Google Scholar 

  29. Meng, Y., Mao, H.-K., Eng, P.J., et al., The Formation of sp3 Bonding in Compressed BN, Nature Mater., 2004, vol. 3, no. 2, pp. 111–114.

    Article  CAS  Google Scholar 

  30. Ueno, M., Hasegawa, K., Oshima, R., et al., Room-Temperature Transition of Rhombohedral Type Boron-Nitride under High Static Pressure, Phys. Rev. B, 1992, vol. 45, no. 18, pp. 10226–10230.

    Article  CAS  Google Scholar 

  31. Yagi, T., Utsumi, W., Yamakata, M., et al., High-Pressure in situ X-ray-Diffraction Study of the Phase Transformation from Graphite to Hexagonal Diamond at Room Temperature, ibid., 1992, vol. 46, no. 10, pp. 6031–6039.

    Article  CAS  Google Scholar 

  32. Solozhenko, V.L. and Kurakevych, O.O., Reversible Pressure-Induced Structure Changes in Turbostratic BN-C Solid Solutions, Acta Cryst. B, 2005, vol. 61, no. 5, pp. 498–503.

    Article  Google Scholar 

  33. Solozhenko, V.L., Kurakevych, O.O., and Kuznetsov, A.Y., Raman Scattering from Turbostratic Graphite-Like BC4 under Pressure, J. Appl. Phys., 2007, vol. 102, no. 6, pp. 063509 1–063509 6.

    Article  Google Scholar 

  34. Solozhenko, V.L., Kurakevych, O.O., Solozhenko, E.G., et al., Equation of State of Graphite-Like BC, Solid State Comm., 2006, vol. 137, no. 5, pp. 268–271.

    Article  CAS  Google Scholar 

  35. Talyzin, A.V., Solozhenko, V.L., Kurakevych, O.O., et al., Colossal Pressure-Induced Lattice Expansion of Graphite Oxide in the Presence of Water, Angewandte Chemie International Edition, 2008, vol. 47, no. 43, pp. 8268–8271.

    Article  CAS  Google Scholar 

  36. Kurakevych, O.O., Restricted Growth of Solid Phase from Solution, Mater. Chem. Phys., 2007, vol. 105, nos. 2–3, pp. 401–407.

    Article  CAS  Google Scholar 

  37. Liang, Q., Yan, C.-S., Meng, Y., et al., Recent Advances in High-Growth Rate Single-Crystal CVD Diamond, Diamond Relat. Mater., 2009, vol. 18, nos. 5–8, pp. 698–703.

    Article  CAS  Google Scholar 

  38. Oganov, A.R. and Solozhenko, V.L., Boron: a Hunt for Superhard Polymorphs, J. Superhard Mater., 2009, vol. 31, no. 5, pp. 285–291.

    Article  Google Scholar 

  39. Amberger, E. and Stumpf, W., Gmelin Handbook of Inorganic Chemistry, Berlin: Springer-Verlag, 1981, pp. 112–238.

    Google Scholar 

  40. Gabunia, D., Tsagareishvili, O., Darsavelidze, G., et al., Preparation, Structure and Some Properties of Boron Crystals with Different Content of 10B and 11B Isotopes, J. Solid State Chem., 2004, vol. 177, no. 2, pp. 600–604.

    Article  CAS  Google Scholar 

  41. Gabunia, D., Tsagareishvili, O., Lezhava, D., et al., Peculiarities of Changes of Some Physico-Mechanical Characteristics of Monoisotopes 10B, 11B and Natural β-Boron, ibid., 2006, vol. 179, no. 9, pp. 2944–2948.

    Article  CAS  Google Scholar 

  42. Oganov, A.R., Chen, J., Gatti, C., et al., Ionic High-Pressure Form of Elemental Boron, Nature, 2009, vol. 457, no. 7231, pp. 863–867.

    Article  CAS  Google Scholar 

  43. Oganov, A.R., Chen, J., Gatti, C., et al., Addendum: Ionic High-Pressure Form of Elemental boron, ibid., 2009, vol. 460, no. 7252, pp. 292–292.

    Article  CAS  Google Scholar 

  44. Le Godec, Y., Kurakevych, O.O., Munsch, P., et al., Equation of State of Orthorhombic Boron, γ-B28, Solid State Comm., 2009, vol. 149, no. 33–34, pp. 1356–1358.

    Article  Google Scholar 

  45. Vlasse, M., Naslain, R., Kasper, J.S., et al., Crystal Structure of Tetragonal Boron Related to α-AlB12, J. Solid State Chem., 1979, vol. 28, no. 3, pp. 289–301.

    Article  CAS  Google Scholar 

  46. Domnich, V., Gogotsi, Y., and Trenary, M., Identification of Pressure-Induced Phase Transformations Using Nanoindentation, Mater. Res. Soc. Symp. Proc., 2001, vol. 649, pp. Q8.9.1–Q8.9.6.

    CAS  Google Scholar 

  47. Kurakevych, O.O. and Solozhenko, V.L., Rhombohedral Boron Subnitride, B13N2, by X-ray Powder Diffraction, Acta Cryst. C, 2007, vol. 63. pp. i80-i82.

  48. Solozhenko, V.L. and Kurakevych, O.O., Chemical Interaction in the B-BN System at High Pressures and Temperatures. Synthesis of Novel Boron Subnitrides, J. Solid State Chem., 2009, vol. 182, no. 6, pp. 1359–1364.

    Article  CAS  Google Scholar 

  49. Solozhenko, V.L., Kurakevych, O.O., Turkevich, V.Z., et al. On the Problem of the Phase Relations in the B-BN System at High Pressures and Temperatures, J. Superhard Mater., 2009, vol. 31, no. 1, pp. 1–6.

    Article  Google Scholar 

  50. Kurakevych, O.O. and Solozhenko, V.L., 300-K Equation of State of Rhombohedral Boron Subnitride, Solid State Comm., 2009, vol. 149, nos. 47–48, pp. 2169–2171.

    Article  CAS  Google Scholar 

  51. Koichi, N., Atsushi, N., and Toshio, H., The Effect of Stoichiometry on Mechanical Properties of Boron Carbide, J. Amer. Ceram. Soc., 1984, vol. 67, no. 1, pp. C-13–C-14.

    Google Scholar 

  52. Kurdyumov, A.V., Malogolovets, V.G., Novikov, N.V., et al.,Polimorfnye modifikatsii ugleroda i nitride bora (Polymorph Modifications of Carbon and Boron Nitride), Moscow: Metallurgiya, 1994.

    Google Scholar 

  53. Novikov, N.V., Sirota, Y.V., Mal’nev, V.I., et al., Mechanical Properties of Diamond and Cubic BN at Different Temperatures and Deformation Rates, Diamond Relat. Mater., 1993, vol. 2, no. 9, pp. 1253–1256.

    Article  CAS  Google Scholar 

  54. Krell, A. and Bakun, O.V. High-Temperature Hardness of Al2O3-Base Ceramics, Acra Metall., 1986, vol. 34, no. 7, pp. 1315–1319.

    Article  CAS  Google Scholar 

  55. O’Connor, J.R., Smiltens, J., et al., A High Temperature Semiconductor, Oxford, London, New York, Paris: Pergamon Press, 1960.

    Google Scholar 

  56. Marinescu, I.D., Tonshoff, H.K., Inasaki, I., et al. Handbook of Ceramic Grinding and Polishing, Noyes Publications: Berkshire, 2000.

    Google Scholar 

  57. Otani, S., Korsukova, M.M., and Aizawa, T., High-Temperature Hardness of ReB2 Single Crystals, J. Alloy. Comp., 2008, vol. 477, nos. 1–2, pp. L28–L29.

    Google Scholar 

  58. Solozhenko, V.L., Kurakevych, O.O., and Oganov, A.R., On the Hardness of a New Boron Phase, Orthorhombic γ-B28, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 428–429.

    Article  Google Scholar 

  59. Kumashiro, Y., Okada, Y., and Gonda, S., Crystal Growth of Thick Wafers of Boron Phosphide, J. Cryst. Growth, 1984, vol. 70, nos. 1–2, pp. 507–514.

    Article  CAS  Google Scholar 

  60. McMillan, P.F., Hubert, H., Chizmeshya, A., et al., Nucleation and Growth of Icosahedral Boron Suboxide Clusters at High Pressure, J. Solid State Chem., 1999, vol. 147, no. 1, pp. 281–290.

    Article  CAS  Google Scholar 

  61. Bairamashvili, I.A., Kalandadze, G.I., Eristavi, A.M., et al., An Investigation of the physico-mechanical properties of B6O and SiB4, J. Less Comm. Met., 1979, vol. 67, no. 2, pp. 455–459.

    Article  CAS  Google Scholar 

  62. Giunchi, G., Malpezzi, L., and Masciocchi, N., A New Crystalline Phase of the Boron-Rich Metal-Boride Family: the Mg2B25 Species, Solid State Sci., 2006, vol. 8, pp. 1202–1208.

    Article  CAS  Google Scholar 

  63. Brutti, S., Colapietro, M., Balducci, G., et al., Synchrotron Powder Diffraction Rietveld Refinement of MgB20 Crystal Structure, Intermetallics, 2002, vol. 10, pp. 811–817.

    Article  CAS  Google Scholar 

  64. Higashi, I., Iwasaki, H., Ito, T., et al., Single-Crystal X-ray Diffraction Study of AlB31 of the Beta-Rhombohedral Boron Structure, J. Solid State Chem., 1989, vol. 82, pp. 230–238.

    Article  CAS  Google Scholar 

  65. Vlasse, M. and Viala, J.C., The Boron-Silicon Solid Solution: A Structural Study of the SiB-36 Composition, ibid., 1981, vol. 37, no. 2, pp. 181–188.

    Article  CAS  Google Scholar 

  66. Vlasse, M., Slack, G.A., Garbauskas, M., et al., The Crystal Structure of SiB6, ibid., 1986, vol. 63, no. 1, pp. 31–45.

    Article  CAS  Google Scholar 

  67. Rizzo, H.F. and Bidwell, L.R., Formation and Structure of SiB4, J. Amer. Ceram. Soc., 1960, vol. 43, no. 10, pp. 550–552.

    Article  CAS  Google Scholar 

  68. Cook B.A., Harringa, J.L., Lewis, T.L., et al., A New Class of Ultrahard Materials Based on AlMgB14, Scripta Materialia, 2000, vol. 42, no. 6, pp. 597–602.

    Article  CAS  Google Scholar 

  69. Gu, Q., Krauss, G., and Steurer, W., Transition Metal Borides: Superhard versus Ultra-Incompressible, Advanced Mater., 2008, vol. 20, no. 19, pp. 3620–3626.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Mukhanov, O.O. Kurakevych, V.L. Solozhenko, 2010, published in Sverkhtverdye Materialy, 2010, Vol. 32, No. 3, pp. 33–45.

About this article

Cite this article

Mukhanov, V.A., Kurakevych, O.O. & Solozhenko, V.L. Thermodynamic model of hardness: Particular case of boron-rich solids. J. Superhard Mater. 32, 167–176 (2010). https://doi.org/10.3103/S1063457610030032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457610030032

Key words

Navigation