Skip to main content
Log in

Interatomic bond energy and analytical scale of hardness

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Based on detailed models of interatomic cohesion and the well-developed structural-thermodynamic approach, the interatomic bond energy has been determined for some covalent and metallic crystals and it has been found to agree with experimental data. Using the proposed analytical relationship for the degree of covalency of crystals the author has elaborated a generalized model that describes experimental hardness of supersclerometer materials (diamond, cBN, SiC, and others), minerals, refractory compounds, semiconductors, ionic crystals and metals. On the basis of the mechanical-chemical approach to (nano)flow a dislocation model of crystal-mechanical anisotropy of yield strength has been put forward for monocrystalline diamond and lonsdaleite; the model makes it possible to draw a conclusion on a slight difference in their sclerometric characteristics. The experimental relationships that govern high-temperature high-pressure plasticity in some covalent crystals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novikov, N.V. (Ed.), Fizicheskie svoistva almaza: Spravochnik (Physical Properties of Diamond. Handbook), Kiev: Naukova Dumka, 1987.

    Google Scholar 

  2. Novikov, N.V. (Ed.), Sintez, spekanie i svoistva kubicheskogo nitrida bora (Synthesis, Sintering, and Properties of Cubic Boron Nitride), Kiev: Naukova Dumka, 1993.

    Google Scholar 

  3. Novikov, N.V. (Ed.), Sintez sverkhtverdykh materialov (Synthesis of Superhard Materials), Kiev: Naukova Dumka, 2002, vol.1.

    Google Scholar 

  4. Gao, F.M. and Gao, L.H., Microscopic models of hardness, J. Superhard Mater., 2010, vol. 32, no. 3, pp. 148–166.

    Article  Google Scholar 

  5. Karapetyants, M.Kh. and Drakin, S.I., Stroenie veshchestva (Structure of Matter), Moscow: Vysshaya Shkola, 1978.

    Google Scholar 

  6. Samsonov, G.V. (Ed.), Fiziko-khimicheskie svoistva elementov. Spravochnik (Physicochemical Properties of Elements. Handbook), Kiev: Naukova Dumka, 1965.

    Google Scholar 

  7. Coulson, C., Valence, Oxford University Press, 1961.

    Google Scholar 

  8. Kikoin, I.K. (Ed.), Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Quantities. Handbook), Moscow: Atomizdat, 1976.

    Google Scholar 

  9. Boron nitride, boron carbide, boron, silicon, germanium, beryllium oxide, gold, tin: https://en.wikipedia.org/wiki.

  10. Frantsevich, I.N. (Ed.), Sverkhtverdye materialy (Superhard Materials), Kiev: Naukova Dumka, 1980.

    Google Scholar 

  11. Frantsevich, I.N. (Ed.), Uprugie postoannye i moduli uprugosti metallov i nemetallov. Sprav. (Elastic Constants and Elastic Moduli of Metals and Nonmetals), Kiev: Naukova Dumka, 1982.

    Google Scholar 

  12. Lysenko, A.V., Structural and mechano-chemical features of high-pressure phases forming at p, Tand p-treatment of graphite, J. Superhard Mater., 2014, vol. 36, no. 6, pp. 401–409.

    Article  Google Scholar 

  13. Gilman, J., Mechanical properties of ionic crystals, Uspekhi Fiz. Nauk, 1963, vol. 80, no. 3, pp. 456–503.

    Google Scholar 

  14. Fedorov, D.K., Shorshorov, M.K., and Khakimova, D.K., Uglerod i ego vzaimodeistvie s metallami (Carbon and Its Interaction with Metals), Moscow: Metallurgiya, 1978.

    Google Scholar 

  15. Lysenko, A.V., Force constants of elastic deformation of chemical s-bonds in diamond and superhard single crystals having a sphalerite lattice, Sverkhtverdye Materialy, 2005, no. 3, pp. 46–56 [J. Superhard Mater., 2005, no. 3].

    Google Scholar 

  16. Ormont, B.F., On the incorrect use of the notion of the crystal lattice energy in relevant publications and on the advisability of introducing the notion of the atomization energy, Zhurn. Fiz. Khim., 1957, vol. 31, no. 2, pp. 509–510.

    CAS  Google Scholar 

  17. Shaskol’skaya, M.P., Kristallografiya (Crystallography), Moscow: Vysshaya Shkola, 1976.

    Google Scholar 

  18. Weiss, R., Solid-State Physics for Metallurgists, Pergamon Press, 1963.

    Google Scholar 

  19. Haberditzl, W., Basteine der Materie und Chemische Binding (Structure of Matter and Chemical Bond), Berlin: VEB Deutscher Verlag der Wissenscaften, 1972.

    Google Scholar 

  20. Kurilenko, O.D., Kratkiy spravochnik po khimii (Quick-Reference Handbook of Chemistry), Kiev: Naukova Dumka, 1965.

    Google Scholar 

  21. Mishchenko, K.P. and Ravdel’, A.A., Kratkiy spravochnik fiziko-khimicheskikh velichin (Quick-Reference Handbook of Physical-Chemical Quantities), Leningrad: Khimiya, 1967.

    Google Scholar 

  22. Hildenbrand, D.L. and Hall, W.F., The vaporization behavior of boron nitride and aluminium nitride, J. Phys. Chem., 1955, vol. 67, pp. 888–893.

    Article  Google Scholar 

  23. Bernstein, H.J., Bond energies in hydrocarbons, Trans. Farad. Soc., 1962, vol. 58, no. 12, pp. 2285–2287.

    Article  CAS  Google Scholar 

  24. Nikol’skii, B.P. (Ed.), Spravochnik khimika v dvukh tomakh (Chemist’s Handbook in Two Volumes), Leningrad: Khimiya, 1971, vol.1.

  25. Yablonskii, G.S., Bykov, V.I., and Gorban’, A.N., Kineticheskie modeli kataliticheskikh reaktsii (Kinetic Models of Catalytic Reactions), Novosibirsk: Nauka, 1983.

    Google Scholar 

  26. Gilman, J.J., Flow of covalent solids at low temperatures, J. Appl. Phys., 1975, vol. 46, no. 12, pp. 5110–5113.

    Article  CAS  Google Scholar 

  27. Tkachenko, Yu.V., The Influence of High Hydrostatic Pressure on Microhardness of Ionic and Covalent Crystals. Extended Abstract of Cand. Sci. (Phys.-Chem.), Donetsk, 1994.

    Google Scholar 

  28. Shul’zhenko, A.A., Determination of ultimate compression strength of synthetic diamonds, Sinteticheskie Almazy, 1969, issue 6, pp. 27–36.

    Google Scholar 

  29. Marsh, D.M., Plastic flow in glass, Proc. Roy. Soc. A, 1964, vol. 279, no. 1378, pp. 420–435.

    Article  Google Scholar 

  30. Bokiy, G.B., Bezrukov, G.N., and Naletov, A.M., Prirodnye i sinteticheskie almazy (Natural and Synthetic Diamonds), Moscow: Nauka, 1986.

    Google Scholar 

  31. Barenblatt, G.I. (Ed.), Mekhanicheskie svoistva novykh materialov (Mechanical Properties of New Materials), Moscow: Mir, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lysenko.

Additional information

Original Russian Text © A.V. Lysenko, 2017, published in Sverkhtverdye Materialy, 2017, Vol. 39, No. 1, pp. 35–46.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, A.V. Interatomic bond energy and analytical scale of hardness. J. Superhard Mater. 39, 25–33 (2017). https://doi.org/10.3103/S1063457617010038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457617010038

Keywords

Navigation