Skip to main content
Log in

Biofilm formation by Streptococcus pneumoniae

  • Reviews
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

We describe the formation of biofilm by Streptococcus pneumoniae (pneumococcus). Virtually all wild-type pneumococci are able to form a biofilm. Pneumococcal capsule can reduce biofilm production. The propensity to form biofilms has a reverse correlation with the amount of capsule material. Invasive pneumococcal isolates and noninvasive strains that persist in the nasopharynx have different biofilm potentials. In this review, we discuss a number of issues in respect to the effector and regulatory factors in the formation and maintenance of pneumococcal biofilms. Based on the reviewed studies, we conclude that pneumococcus benefits from biofilm phenotype only in the context of a persistent chronic infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayanskiy, A.N., Molchanova, I.V., and Iskhakova, S.H., Antibodies to common species-specific pneumococcal antigens in the spectrum of antibacterial human antibodies, Zh. Mikrobiol. Epidemiol. Immunobiol., 1982, Vol. 9, pp. 86–90.

    Google Scholar 

  2. Corsterton, J.W., Stewart, P.S., and Greenberg, E.P., Bacterial biofilms: A common cause of persistent infections, Science, Vol. 284, pp. 1318–1322.

  3. Briles, D.E., Hollingshead, S.K., Paton, J.C., et al., Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with S. pneumoniae, J. Infect. Dis., 2003, Vol. 188, pp. 339–348.

    Article  CAS  PubMed  Google Scholar 

  4. Joyce, E.A., Kawale, A., Censini, S., et al., LuxS is required for persistent pneumococcal carriage and expression of virulence and biosynthesis genes, Infect. Immun., 2004, Vol. 72, pp. 2964–2975.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lizcano, A., Chin, T., Sauer, K., et al., Early biofilm formation on microtiter plates is not correlated with the invasive disease potential of S. pneumoniae, Microb. Pathog., 2010, Vol. 48, pp. 124–130.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nistico, L., Kreft, R., Gieseke, A., et al., Adenoid reservoir for pathogenic biofilm bacteria, J. Clin. Microbiol., 2011, Vol. 49, pp. 1411–1420.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Allegrucci, M., Hu, F.Z., Shen, K., et al., Phenotypic characterization of S. pneumoniae biofilm development, J. Bacteriol., 2006, Vol. 188, pp. 2325–2335.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Munoz-Ellias, E.J., Marcano, J., and Camilli, A., Isolation of S. pneumoniae biofilm mutants and their characterization during nasopharyngeal colonization, Infect. Immun., 2008, Vol. 76, pp. 5049–5061.

    Article  Google Scholar 

  9. Tapiainen, T., Kujala, T., Kaijalainen, T., et al., Biofilm formation by S. pneumoniae isolates from paediatric patients, APMIS, 2010, Vol. 118, pp. 255–260.

    Article  PubMed  Google Scholar 

  10. Camilli, R. and Baldassarri, L., Contribution of serotype and genetic background to biofilm formation by S. pneumoniae, Eur. J. Clin. Microbiol. Infect. Dis., 2011, Vol. 30, pp. 97–102.

    Article  CAS  PubMed  Google Scholar 

  11. Carcia-Castillo, M., Morosini, I., Valverde, A., et al., Differences in biofilm development and antibiotic susceptibility among S. pneumoniae isolates from cystic fibrosis samples and blood cultures, J. Antimicrob. Chemother., 2007, Vol. 59, pp. 301–304.

    Article  Google Scholar 

  12. Moscoso, M., Garcia, E., and Lopez, R., Biofilm formation by S. pneumoniae: Role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion, J. Bacteriol., 2006, Vol. 188, pp. 7785–7795.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hall-Stoodley, L., Nistico, L., Sambanthamoorthy, K., et al., MBC Microbiol., 2008, Vol. 8, pp. 173–199.

    Google Scholar 

  14. Domenech, M., Carcia, E., Prieto, A., and Moscoso, M., Insight into the composition of the intercellular matrix of S. pneumoniae biofilms, {iEnviron. Microbiol.}, 2012, Vol. 15, pp. 502–516.

    Article  Google Scholar 

  15. Mayanskii, A.N. and Chebotar’, I.V., The strategy of management by bacterial biofilm process, Zh. Infektol., 2012, Vol. 3, No. 3, pp. 5–15.

    Google Scholar 

  16. Allegrucci, M. and Sauer, K., Characterization of colony morphology variants isolated from S. pneumoniae biofilms, J. Bacteriol., 2007, Vol. 189, pp. 2030–2038.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Marks, L.R., Parameswaran, G.I., and Hakansson, A.P., Pneumococcal interactions with epithelial cells are crucial for optimal biofilm formation and colonization in vitro and in vivo, Infect. Immun., 2012, Vol. 80, pp. 2744–2780.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sanchez, C., Kumar, N., Lizcano, A., et al., S. pneumoniae in biofilms are unable to cause invasive disease due to altered virulence determinant production, PLoS One, 2011, Vol. 6, p. e28738.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Orihuela, C.J., Gao, G., Francis, K.P., and Tuomanen, E.I., Tissue-specific contributions of pneumococcal virulence factors to pathogenesis, J. Infect. Dis., 2004, Vol. 190, pp. 1661–1669.

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez, C., Hurtgen, B., Lizcano, A., et al., Biofilm and planktonic pneumococci demonstrate disparate immunoreactivity to human convalescent sera, BMC Microbiol., 2011, Vol. 11, pp. 245–257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hall-Stoodley, L., Hu, F.Z., Gieseke, A., et al., Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media, J. Am. Med. Assoc., 2006, Vol. 296, pp. 202–211.

    Article  CAS  Google Scholar 

  22. Sanderson, A.R., Leid, J., and Hunsaker, D., Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis, Laryngoscope, 2006, Vol. 116, pp. 1121–1126.

    Article  PubMed  Google Scholar 

  23. Hoa, M., Tomivic, S., Nistico, L., et al., Identification of adenonoid biofilms with middle ear pathogens in otitis-prone children utilizing SEM and FISH, Int. J. Pediatr. Otorhinolalyngol., 2009, Vol. 73, pp. 1242–1248.

    Article  Google Scholar 

  24. Al-Mutairi, D. and Kilty, S.J., Bacterial biofilms and the pathophysiology of chronic rhinosinusitis, Curr. Opin. Allergy Clin. Immunol., 2011, Vol. 11, pp. 18–23.

    Article  PubMed  Google Scholar 

  25. Reid, S.D., Hong, W., Dew, K.E., et al., S. pneumoniae forms surface-attached communities in the middle ear of experimentally infected chinchillas, J. Infect. Dis., 2009, Vol. 199, pp. 786–794.

    Article  PubMed  Google Scholar 

  26. Vidal, J.E., Ludewick, H.P., Kunkel, R.M., et al., The LuxS-dependent quorum-sensing system regulates early biofilm formation by S. pneumoniae strain D39, Infect. Immun., 2011, Vol. 79, pp. 4050–4060.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Oggioni, M.R., Trappetti, C., Kadioglu, A., et al., Switch from planktonic to sessile life: A major event in pneumococcal pathogenesis, Mol. Microbiol., 2006, Vol. 61, pp. 1196–1210.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Sanchez, C., Shivshankar, P., Stol, K., et al., The pneumococcal serine rich repeat protein is an intraspecies bacterial adhesion that promotes bacterial aggregation in vivo and in biofilms, PLoS Pathog, 2010, Vol. 6, p. e1001044.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Parker, D., Soong, G., Planet, P., et al., The nana neuraminidase of S. pneumoniae is involved in biofilm formation, Infect. Immun., 2009, Vol. 77, pp. 3722–3730.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Shivshankar, P., Sanchez, C., Rose, L.F., and Orihuela, C.J., The S. pneumoniae adhesion PsrP binds to keratin 10 on lung cells, Mol. Microbiol., 2009, Vol. 73, pp. 663–679.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Price, K.E. and Camilli, A., Pneumolysin localizes to the cell wall of S. pneumoniae, J. Bacteriol., 2009, Vol. 191, pp. 2163–2168.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Magee, A.D. and Yother, J., Requirement for capsule in colonization by S. pneumoniae, Infect. Immune, 2001, Vol. 69, pp. 3755–3761.

    Article  CAS  Google Scholar 

  33. Domenech, M., Garcia, E., and Moscoso, M., Versatility of the capsular genes during biofilm formation by S. pneumoniae, Environ. Microbiol., 2009, Vol. 11, pp. 2542–2555.

    Article  CAS  PubMed  Google Scholar 

  34. Weiser, J.N., Markiewicz, Z., Tuomanen, E.I., and Wani, J.H., Relationship between phase variation in colony morphology, intrastrain variation in cell wall physiology and nasopharyngeal colonization by S. pneumoniae, Infect. Immun., 1996, vols. 2240–2245.

    Google Scholar 

  35. Weiser, J.N., Phase variation in colon opacity by S. pneumoniae, Microb. Drug Resist., 1998, Vol. 4, pp. 129–135.

    Article  CAS  PubMed  Google Scholar 

  36. Orihuela, C.J., Radin, J.N., Sublett, J.E., et al., Microarray analysis of pneumococcal gene expression during invasive disease, Infect. Immun., 2004, Vol. 72, pp. 5582–5596.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Briles, D.E., Novak, L., Hotomi, M., et al., Nasal colonization with S. pneumoniae includes subpopulations of surface and invasive pneumococci, Infect. Immun., 2005, Vol. 73, pp. 6945–6951.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Cundell, D.R., Weiser, J.N., Shen, J., et al., Relationship between colonial morphology and adherence of S. pneumoniae, Infect. Immun., 1995, Vol. 63, pp. 757–761.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Kim, J.O. and Weiser, J.N., Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of S. pneumoniae, J. Infect. Dis., 1998, Vol. 177, pp. 368–377.

    Article  CAS  PubMed  Google Scholar 

  40. Stock, A.M., Robinson, V.L., and Goudreau, P.N., Two-component signal transduction, Annu. Rev. Biochem., 2000, Vol. 69, pp. 183–215.

    Article  CAS  PubMed  Google Scholar 

  41. Shepherd, N.E., Harrison, R.S., and Fairlie, D.P., Targeting quorum sensing and competence stimulation for antimicrobial chemotherapy, Curr. Drug Targets, 2012, Vol. 13, pp. 1348–1359.

    Article  CAS  PubMed  Google Scholar 

  42. Stroeher, U.R., Paton, A.W., Ogunniyi, A.D., and Paton, J.C.F., Mutation of LuxS of S. pneumoniae effects virulence in a mouse model, Infect. Immun., 2003, Vol. 71, pp. 3206–3212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Jedrzejas, M.J., Pneumococcal virulence factors: structure and function, Microbiol. Mol. Biol. Rev., 2001, Vol. 65, pp. 187–207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Trappetti, C., Potter, A.J., Paton, A.P., et al., LuxS mediates iron-dependent biofilm formation, competence, and fratricide in S. pneumoniae, Infect. Immun., 2011, Vol. 79, pp. 4550–4558.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Trappetti, C., van der Maten, E., Amin, Z., et al., Site of isolation determines biofilm formation and virulence phenotypes of S. pneumoniae serotype 3 clinical isolates, Infect. Immun., 2013, Vol. 81, pp. 505–513.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kowalko, J.E. and Sebert, M.E., The S. pneumoniae competence regulatory system influences respiratory tract colonization, Infect. Immun., 2008, Vol. 76, pp. 3131–3140.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Trappetti, C., Gualdi, L., Di Media, L., et al., The impact of the competence quorum sensing system on S. pneumoniae biofilms varies depending on the experimental model, BMC Microbiol., 2011, Vol. 11, pp. 75–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Vidal, J.E., Howery, K.E., Ludewick, H.P., Nava, P., and Klugman, K.P., Quorum-sensing systems LuxS/autoinducer 2 and com regulate S. pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells, Infect. Immun., 2013, Vol. 81, pp. 1341–1353.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Trappetti, C., Kadiogly, A., Carter, M., et al., Sialic acid: A preventable signal for pneumococcal biofilm formation, colonization, and invasion of the host, J. Infect. Dis., 2009, Vol. 199, pp. 1497–1505.

    Article  CAS  PubMed  Google Scholar 

  50. Manco, S., Hemon, F., Yesikaya, H., et al., Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis, Infect. Immun., 2006, Vol. 74, pp. 4014–4020.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. King, S.J., Whatmore, A.M., and Dowson, C.G., NanA, a neuraminidase from S. pneumoniae, shows high levels of sequence diversity, at least in part through recombination with S. oralis, J. Bacteriol., 2005, Vol. 187, pp. 5376–5386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Pettigrew, M.M., Fennie, K.P., York, M.P., et al., Variation in the presence of neuraminidase genes among S. pneumoniae isolates with identical sequence types, Infect. Immun., 2006, Vol. 74, pp. 3360–3365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Weimer, K.E.D., Armbruster, C.E., Juneau, R.A., et al., Coinfection with Haemophilus influenzae promotes pneumococcal biofilm formation during experimental otitis media and impedes the progression of pneumococcal disease, J. Infect. Dis., 2010, Vol. 202, pp. 1068–1075.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Domenech, M., Garcia, E., and Moscoso, M., In vitro destruction of S. pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases, Antimicrob. Agentsie Chemother., 2011, Vol. 55, pp. 4144–4148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Mayanskiy.

Additional information

Original Russian Text © A.N. Mayanskiy, I.V. Chebotar, A.V. Lazareva, N.A. Mayanskiy, 2015, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2015, No. 3, pp. 16–22.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayanskiy, A.N., Chebotar, I.V., Lazareva, A.V. et al. Biofilm formation by Streptococcus pneumoniae . Mol. Genet. Microbiol. Virol. 30, 124–131 (2015). https://doi.org/10.3103/S0891416815030040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416815030040

Keywords

Navigation