Skip to main content
Log in

Contribution of serotype and genetic background to biofilm formation by Streptococcus pneumoniae

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Streptococcus pneumoniae is the main cause of a variety of infections in children and the elderly ranging from otitis media to pneumonia. In recent years, biofilm formed by S. pneumoniae has begun to attract attention for a possible role in strains fitness and/or virulence. We evaluated the ability to form biofilm in a collection of clinical isolates, including antibiotic-resistant isolates whose genetic background had been previously ascertained. It appears that biofilm formation is a rather common feature among pneumococci, an observation which would fit with some types of infections caused by this microorganism (i.e. otitis, meningitis), which have often been associated with the ability to form biofilm. Antibiotic-susceptible isolates were able to form thicker biofilms compared to resistant strains, although no specific association could be observed with either serotypes or clones. This lack of association between the ability to form biofilm and any of the characters examined, while being a very common feature of pneumococci, may be suggestive of an important role for biofilm in pneumococcal ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Obaro SK, Monteil MA, Henderson DC (1996) Fortnightly review: the pneumococcal problem. Br Med J 312:1521–1525

    CAS  Google Scholar 

  2. Austrian R (1986) Some aspects of the pneumococcal carrier state. J Antimicrob Chemother 18:35–45

    Article  PubMed  Google Scholar 

  3. Mitchell TJ (2003) The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol 1:219–230

    Article  CAS  PubMed  Google Scholar 

  4. Loo CY, Corliss DA, Ganeshkumar N (2000) Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182:374–1382

    Article  Google Scholar 

  5. Li YH, Tang N, Aspiras MB, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708

    Article  CAS  PubMed  Google Scholar 

  6. Cvitkovitch DG, Li YH, Ellen RP (2003) Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 112:1626–1632

    CAS  PubMed  Google Scholar 

  7. Petersen FC, Pecharki D, Scheie AA (2004) Biofilm mode of growth of Streptococcus intermedius favored by a competence-stimulating signaling peptide. J Bacteriol 186:6327–6331

    Article  CAS  PubMed  Google Scholar 

  8. Qi F, Kreth J, Levesque CM, Kay O, Mair RW, Shi W, Cvitkovitch DG, Goodman SD (2005) Peptide pheromone induced cell death of Streptococcus mutans. FEMS Microbiol Lett 251:321–326

    Article  CAS  PubMed  Google Scholar 

  9. Waite RD, Struthers JK, Dowson CG (2001) Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol Microbiol 42:1223–1232

    Article  CAS  PubMed  Google Scholar 

  10. Donlan RM, Piede JA, Heyes CD, Sanii L, Murga R, Edmonds P, El-Sayed I, El-Sayed MA (2004) Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl Environ Microbiol 70:4980–4988

    Article  CAS  PubMed  Google Scholar 

  11. Allegrucci M, Hu FZ, Shen K, Hayes J, Ehrlich GD, Post JC, Sauer K (2006) Phenotypic characterization of Streptococcus pneumoniae biofilm development. J Bacteriol 188:2325–2335

    Article  CAS  PubMed  Google Scholar 

  12. Reid SD, Hong W, Dew KE, Winn DR, Pang B, Watt J, Glover DT, Hollingshead SK, Swords WE (2009) Streptococcus pneumoniae forms surface-attached communities in the middle ear of experimentally infected chinchillas. J Infect Dis 199:786–794

    Article  PubMed  Google Scholar 

  13. Hoa M, Syamal M, Sachdeva L, Berk R, Coticchia JM (2009) Demonstration of nasopharyngeal and middle ear mucosal biofilms in an animal model of acute otitis media. J Ann Otol Rhinol Laryngol 118:292–298

    Google Scholar 

  14. Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, Ricci S, Andrew PW, Pozzi G (2006) Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61:1196–1212

    Article  CAS  PubMed  Google Scholar 

  15. Parker D, Soong G, Planet P, Brower J, Ratner AJ, Prince A (2009) The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect Immun 77:3722–3730

    Article  CAS  PubMed  Google Scholar 

  16. Donlan RM, Costerton JW (2002) Biofilm: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  Google Scholar 

  17. Budhani RK, Struthers JK (1997) The use of Sorbarod biofilms to study the antimicrobial susceptibility of a strain of Streptococcus pneumoniae. J Antimicrob Chemother 40:601–602

    Article  CAS  PubMed  Google Scholar 

  18. Domenech M, Garcia E, Moscoso M (2009) Versatility of the capsular genes during biofilm formation by Streptococcus pneumoniae. Environ Microbiol 11:2542–2545

    Article  CAS  PubMed  Google Scholar 

  19. Tapiainen T, Kujala T, Kaijalainen T, Ikaheimo I, Saukkoriipi A, Renko M, Salo J, Leinonen M, Uhari M (2010) Biofilm formation by Streptococcus pneumoniae isolates from paediatric patients. APMIS 118:255–260

    Article  PubMed  Google Scholar 

  20. Moscoso M, Garcia E, Lopez R (2006) Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J Bacteriol 188:7785–7795

    Article  CAS  PubMed  Google Scholar 

  21. Pearce BJ, Iannelli F, Pozzi G (2002) Construction of an unencapsulated (rough) strain of Streptococcus pneumoniae. Res Microbiol 153:243–247

    Article  CAS  PubMed  Google Scholar 

  22. Gherardi G, Fallico L, Del Grosso M, Bonanni F, D’Ambrosio F, Manganelli R, Palù G, Dicuonzo G, Pantosti A (2007) Antibiotic resistant invasive pneumococcal clones in Italy. J Clin Microbiol 45:306–312

    Article  CAS  PubMed  Google Scholar 

  23. Baldassarri L, Creti R, Recchia S, Imperi M, Facinelli B, Giovanetti E, Pataracchia M, Alfarone G, Orefici G (2006) Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol 44:2721–2727

    Article  CAS  PubMed  Google Scholar 

  24. Baldassarri L, Cecchini R, Bertuccini L, Ammendolia MG, Iosi F, Arciola CR, Montanaro L, Di Rosa R, Gherardi G, Dicuonzo G, Orefici G, Creti R (2001) Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Med Microbiol Immunol 190:113–120

    CAS  PubMed  Google Scholar 

  25. Pai MP, Samples ML, Mercier RC, Spilde MN (2008) Activities and ultrastructural effects of antifungal combinations against simulated Candida endocardial vegetations. Antimicrob Agents Chemother 52:2367–2376

    Article  CAS  PubMed  Google Scholar 

  26. Fredheim EG, Klingenberg C, Rohde H, Frankenberger S, Gaustad P, Flaegstad T, Sollid JE (2009) Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 47:1172–1180

    Article  CAS  PubMed  Google Scholar 

  27. Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, Kjelleberg S (2009) Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS ONE 4:e5513

    Article  PubMed  Google Scholar 

  28. Russell JB (2007) The energy spilling reaction of bacteria and other organisms. J Mol Microbiol Biotechnol 13:1–11

    Article  CAS  PubMed  Google Scholar 

  29. Weiser JN, Bae D, Epino H, Gordon SB, Kapoor M, Zenewicz LA, Shchepetov M (2001) Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect Immun 69:5430–5439

    Article  CAS  PubMed  Google Scholar 

  30. Murphy TF, Bakaletz LO, Smeesters PR (2009) Microbial interactions in the respiratory tract. Pediatr Infect Dis J 28:121–126

    Article  Google Scholar 

  31. Choy MH, Stapleton F, WIllcox MD, Zhu H (2008) Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens- and non-contact lens-related keratitis. J Med Microbiol 57:1539–1546

    Article  PubMed  Google Scholar 

  32. Lizcano A, Chin T, Sauer K, Tuomanen EI, Orihuela CJ (2010) Early biofilm formation on microtiter plates is not correlated with invasive disease potential of Streptococcus pneumoniae. Microb Pathog 48:124–130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Italian Ministry of Health, Project 1% n. Q1I to L.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Baldassarri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camilli, R., Pantosti, A. & Baldassarri, L. Contribution of serotype and genetic background to biofilm formation by Streptococcus pneumoniae . Eur J Clin Microbiol Infect Dis 30, 97–102 (2011). https://doi.org/10.1007/s10096-010-1060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-010-1060-6

Keywords

Navigation