Skip to main content
Log in

Systems of VO and CaH molecule bands in spectra of spectral type M stars

  • Physycs of Stars and Interstellar Medium
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Radiation absorption by the CaH and VO molecular band systems in atmospheres of spectral type M dwarf stars is simulated. These bands form visible spectral details. The calculations involve detailed lists of lines calculated by different investigators. For the CaH molecule, we investigated the dependence of the calculated synthetic spectra on the adopted dissociation potential. The energy distributions in spectra of the 2MASS2242-2859 (M5.5 V) and SIPS2039-1126 (M7 IV-V) stars are reproduced. It is shown that the observed energy distributions can be confidently described by theoretical spectra calculated for model atmospheres with T eff/lgg/[Fe/H] = 3000/4.5/0 and 2700/4.5/0, respectively. These estimates are consistent with other known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. F. Gray, The Observation and Analysis of Stellar Photospheres (Wiley, New York, 1976; Mir, Moscow, 1980)

    Google Scholar 

  2. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Pure Substances: A Handbook (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  3. Yu. P. Lyubchik and Ya. V. Pavlenko, “The modelling of spectra of young M-dwarfs” Kinematika Fiz. Nebesnykh Tel, 17 17–23 (2001).

    ADS  Google Scholar 

  4. A. Adam, M. Barnes, B. Berno, et al., “Rotational and hyperfine structure in the B 4Π−X 4Σ (0,0) band of VO at 7900 Å: Perturbations by the a 2Σ+, v = 2 level,” J. Mol. Spectrosc. 170, 94–130 (1995).

    Article  ADS  Google Scholar 

  5. R. Alvarez and B. Plez, “Near-infrared narrow-band photometry of M-giant and Mira stars: models meet observations,” Astron. Astrophys. 330, 1109–1119 (1998).

    ADS  Google Scholar 

  6. E. Anders and N. Grevesse, “Abundances of the elements: meteoritic and solar,” Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  Google Scholar 

  7. R. J. Barber, J. Tennyson, G. J. Harris, and R. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).

    Article  ADS  Google Scholar 

  8. A. Burrows, S. R. Ram, P. Bernath, et al., “New CrH opacities for the study of L and brown dwarf atmospheres,” Astrophys. J. 577, 986–992 (2002).

    Article  ADS  Google Scholar 

  9. A. Cheung, P. Hajigeorgiou, G. Huang, and S. Huang, “Rotational structure and perturbations in the B4Π−X 4Σ (1, 0) band and of VO,” J. Mol. Spectrosc. 163, 443–458 (1994).

    Article  ADS  Google Scholar 

  10. A. Cheung, R. Hansen, and A. Merer, “Laser spectroscopy of VO: Analysis of the rotational and hyperfine structure of the CX (0, 0) band,” J. Mol. Spectrosc. 91, 165–208 (1982).

    Article  ADS  Google Scholar 

  11. A. Cheung, R. Hansen, and A. Merer, “Fourier transform spectroscopy of VO: Rotational structure in the A 4Π−X 4Σ- system near 10500 -,” J. Mol. Spectrosc. 92, 391–409 (1982).

    Article  ADS  Google Scholar 

  12. M. Dulick, C. W. Bauschlincher, and A. Burrows, “Line intensities and molecular opacities of the FeH F 4ΔiX 4Δi transition,” Astrophys. J. 594, 651–663 (2003).

    Article  ADS  Google Scholar 

  13. M. C. Gálvez-Ortiz, M. Kuznetsov, J. R. A. Clarke, et al., “Spectroscopic signatures of youth in low-mass kinematic candidates of young moving groups,” Mon. Not. R. Astron. Soc. 439, 3890–3907 (2014).

    Article  ADS  Google Scholar 

  14. D. F. Gray, A digital spectral classification atlas (Appalachian State Univ., Boone, 2009).

    Google Scholar 

  15. P. H. Hauschildt, F. Allard, and E. Baron, “The NExtGen model atmosphere grid for 3000 ≤ T ef ≤ 10000,” Astrophys. J. 512, 377–385 (1999).

    Article  ADS  Google Scholar 

  16. K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinolds, New York, 1979).

    Book  Google Scholar 

  17. F. Kupka, N. Piskunov, T. A. Ryabchikova, et al., “VALD-2: Progress of the Vienna Atomic Line Data Base,” Astron. Astrophys., Suppl. Ser. 138, 119–133 (1999).

    Article  ADS  Google Scholar 

  18. R. L. Kurucz, Data Bank. 1993. CD-ROM N 1-23 (Smithsonian Astrophys. Obs., Cambridge, 1993).

    Google Scholar 

  19. T. Leininger and G.-H. Jeung, “Ab initio calculation of rovibronic transition spectra of Ca H,” J. Chem. Phys. 103, 3942–3949 (1995).

    Article  ADS  Google Scholar 

  20. G. Li, J. J. Harrison, R. S. Ram, et al., “Einstein A coefficients and absolute line intensities for the E 2Π−X 2Σ+ transition of CaH,” J. Quant. Spectrosc. Radiat. Transfer 113, 67–74 (2012).

    Article  ADS  Google Scholar 

  21. A. Merer, G. Huang, A. Cheung, and A. Taylor, “New quartet and doublet electronic transitions in the near-infrared emission spectrum of VO,” J. Mol. Spectrosc. 125, 465–503 (1987).

    Article  ADS  Google Scholar 

  22. S. E. Nersisyan, A. V. Shavrina, and A. A. Yaremchuk, “Analysis of the molecular spectra of N stars on the basis of model atmospheres,” Astrophysics 30, 147–174 (1989).

    Article  ADS  Google Scholar 

  23. Ya. V. Pavlenko, “Analysis of the spectra of two Pleiades brown dwarfs: Teide 1 and Calar 3,” Astrophys. Space Sci. 253, 43–53 (1997).

    Article  ADS  Google Scholar 

  24. Ya. V. Pavlenko, “Molecular bands in the spectra of M stars,” Astron. Rep. 58, 825–834 (2014).

    Article  ADS  Google Scholar 

  25. Y. Pavlenko, M. R. Zapatero Osorio, and R. Rebolo, “On the interpretation of the optical spectra of L-type dwarfs,” Astron. Astrophys. 355, 245–255 (2000).

    ADS  Google Scholar 

  26. B. Plez, “A new TiO line list,” Astron. Astrophys. 337, 495–500 (1998).

    ADS  Google Scholar 

  27. R. S. Richardson, “An investigation of molecular spectra in sun-spots,” Astrophys. J. 73, 216–249 (1931).

    Article  ADS  Google Scholar 

  28. D. Schwenke, “Chemistry and physics of molecules and grains in space,” Faraday Discuss. R. Soc. Chem., No. 109, 1–321 (1998).

    Google Scholar 

  29. A. Shayesteh, S. R. Ram, and P. F. Bernath, “Fourier transform emission spectra of the A 2ΠrX 2Σ+ and B/B2Σ+X 2Σ+ band systems of CaH,” J. Mol. Spectrosc. 288, 46–51 (2013).

    Article  ADS  Google Scholar 

  30. A. Unsold, Physik der Sternatmospheren, 2nd ed. (Springer-Verlag, Berlin, 1955).

    Book  Google Scholar 

  31. P. F. Weck, P. C. Stancil, and K. Kirby, “Theoretical study of the rovibrationally-resolved spectra of CaH,” J. Chem. Phys. 118 9997–10005 (2003).

    Article  ADS  Google Scholar 

  32. B. Yadin, T. Veness, P. Conti, et al., “ExoMol line lists. I. The rovibrational specrum of BeH, MgH and CaH in the X 2Σ+ state,” Mon. Not. R. Astron. Soc. 425, 34–43 (2012).

    Article  ADS  Google Scholar 

  33. L. A. Yakovina and Ya. V. Pavlenko, “Atmospheric lithium abundances of the carbon giants AQ And, HK Lyr, UX Dra, and WZ Cas,” Astron. Rep. 56, 63–76 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Pavlenko.

Additional information

Original Russian Text © Ya.V. Pavlenko, M. Schmidt, 2015, published in Kinematika i Fizika Nebesnykh Tel, 2015, Vol. 31, No. 2, pp. 59–72.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, Y.V., Schmidt, M. Systems of VO and CaH molecule bands in spectra of spectral type M stars. Kinemat. Phys. Celest. Bodies 31, 90–99 (2015). https://doi.org/10.3103/S0884591315020051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591315020051

Keywords

Navigation