Skip to main content
Log in

Optimum salt-gradient solar pond in Jordan

  • Solar Power Plants and Their Application
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The salt gradient solar ponds comprise a hydraulic system subject: to processes at heat; and mass transfer. A brief description of the various models of solar ponds, their main objectives and their development, including a detailed review of the world wide activities in this field were given. These models can usually give good indication of seasonal variation in pond performance and effect of varying the design parameter. Mathematical model is performed to a one dimension transient conduction with heat generation salt gradient solar pond SGSP, with incorporation of the attenuation model for the solar radiation through the water body proposed by Brinkworth and Hawalder, with detailed representation of the loss from the pond service and using the daily monthly averaged local available meteorological data for Dead Sea region in the middle of Jordan (31.03° N lat) and (348° E long). The relationship derived are solved numerically by employing an implicit finite difference approach. Numerical results have clearly shown that the solar heating effect appears considerably more pronounced during the hot seasons (spring and summer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabor, H., Review Articles, Solar Ponds, Solar Energy, 1981, vol. 27, pp. 181–194.

    Article  Google Scholar 

  2. Hull, J., Neilsen, C., and Golding, P., Salinity — Gradient Solar Pond, CRC Press, 1989.

  3. Abughres, S., Mashena, M., and Agha, K., Modeling the Performance of Solar Ponds, Libya: Center for Solar Energy Studies, 1989.

    Google Scholar 

  4. Chepurnity, N. and Savage, S., The Effect of Diffusion on Concentration Profiles in a Solar Pond, Solar Energy, 1975, vol. 17, pp. 203–205.

    Article  Google Scholar 

  5. Hull, J., Membrance Stratified Solar Pond, Proc. ISES. SUN II, 1980, vol. 2, pp. 1000–1004.

    Google Scholar 

  6. Akbarzadel, A., Macdonald, R., and Wang, Y., Reduction of Surface Mixing in Solar Ponds by Floating Rings, Solar Energy, 1983, vol. 31, pp. 337–380.

    Google Scholar 

  7. Atkinson, J. and Harleman, D., A Wind Mixed Layer Model for Solar Ponds, Solar Energy, 1983, vol. 31, pp. 337–380.

    Article  Google Scholar 

  8. Weinberger, H., The Physics of the Solar Pond, Solar Energy, 1964, vol. 8, pp. 45–50.

    Article  Google Scholar 

  9. Rable, A. and Nielsen, C., Solar Pond for Space Heating, Solar Energy, 1975, vol. 17, pp. 1–12.

    Article  Google Scholar 

  10. Tybout, R., A Recursive Alternate to Weinberger’s Model of the Solar Pond, Solar Energy, 1967, vol. 11, pp. 109–111.

    Article  Google Scholar 

  11. Hull, J., Computer Simulation of Solar Pond Thermal Behavior, Solar Energy, 1980, vol. 25, pp. 33–40.

    Article  Google Scholar 

  12. Lorwrey, D. and Johnson, R., Simulation of Solar Pond Using Upward Flow through the Storage Zone, J. Solar Energy Eng., 1985, vol. 108, p. 325.

    Article  Google Scholar 

  13. Meyer, K.A., Numerical Model to Describe the Layer Behavior in Salt Gradient Solar Ponds, J. Solar Energy Eng., 1983, vol. 105, p. 341.

    Article  Google Scholar 

  14. Leshuk, J., Zaworski, R., Styris, D., and Harling, O., Solar Pond Stability Experiments, Solar Energy, 1978, vol. 21, pp. 237–244.

    Article  Google Scholar 

  15. Abughers, S., Monthly Average Daily Insulation for Horizontal and Inclined Surfaces, Solar Wind Tech., 1985, vol. 1, pp. 119–139.

    Article  Google Scholar 

  16. Hawalder, M., The Influence of the Extinction Coefficient on the Effectiveness of Solar Ponds, Solar Energy, 1980, vol. 25, pp. 461–464.

    Article  Google Scholar 

  17. Viskanta, R. and Toor, J., Absorption of Solar Radiation in Ponds’, Solar Energy, 1978, vol. 21, pp. 17–25.

    Article  Google Scholar 

  18. Cengel, Y. and Ozisik, M., Solar Radiation Absorption in Solar Ponds, Solar Energy, 1984, vol. 33, pp. 581–591.

    Article  Google Scholar 

  19. Colbeck, B.H., A Solar Pond for London, Solar Energy, 1977, vol. 19, pp. 321–322.

    Article  Google Scholar 

  20. Phingra, K. and Bryant, H., Thermal Performance of a Cylindrically Symmetric Solar Pond, Solar Energy, 1983, vol. 30, pp. 589–595.

    Article  Google Scholar 

  21. Helwa, N. and Toukhy, S., Optical Analysis of the Behavior of a SGSP, Appl. Energy, 1987, vol. 26, p. 315.

    Article  Google Scholar 

  22. Soshi, V. and Kishore, A., A Numerical Study of the Effect of Solar Attenuation Modeling of the Performance of Solar Ponds, Solar Energy, 1985, vol. 35, p. 377.

    Article  Google Scholar 

  23. Shah, S., Short, T., and Fynn, R., Modeling and Testing a Salt Gradient Solar Pond in Northwest Ohio, Solar Energy, 1981, vol. 27, pp. 393–401.

    Article  Google Scholar 

  24. Kooi, C., Salt Gradient Solar Pond with Reflecting Bottom Application to the Saturated Pond, Solar Energy, 1981, vol. 26, pp. 113–120.

    Article  Google Scholar 

  25. Katti, Y. and Bansal, P., Multiple Reflection Phenomenon in Salt Gradient Solar Ponds, Solar Energy, 1984, vol. 33, pp. 65–73.

    Article  Google Scholar 

  26. Hull, J., Calculation of Solar Pond Thermal Performance with a Diffusely Bottom, Solar Energy, 1982, vol. 29, p. 385.

    Article  Google Scholar 

  27. Hawalder, M. and Brinkworth, B., An Analysis of the Non Convecting Solar Pond, Solar Energy, 1981, vol. 27, pp. 195–204.

    Article  Google Scholar 

  28. Holman, J., Heat Transfer, New York: McGraw Hill, 1976, p. 487.

    Google Scholar 

  29. Duffe, J. and Beckman, W., Solar Energy Thermal Processes, New York: Wiley, 1974.

    Google Scholar 

  30. Dyksterhuis, F., Honycomb Stabilized Solar Pond, Proc. 21st Ann. Conf. ISES/ANZ, Brisbane, 1982, pp. 29–32.

  31. Meteorological Department, H.K. of Jordan. Private Communication.

  32. Perry, R. and Chillon, C., Chemical Engineering Handbook, McGraw Hill, 1973.

  33. Al-Jamal, K., Alameddine, O., Al-Shami, H., and Shaban, N., Passive Cooling Evaluation of Roof Pond Systems, Solar Wind Tech., 1988, vol. 5, no. 1, pp. 55–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

About this article

Cite this article

Al-Dabbas, M.A. Optimum salt-gradient solar pond in Jordan. Appl. Sol. Energy 47, 14–23 (2011). https://doi.org/10.3103/S0003701X11010038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X11010038

Keywords

Navigation