Skip to main content
Log in

Experimental study on thermal behavior of new mixed medium phase change material for improving productivity on salt gradient solar pond

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Five identical cylindrical salinity-gradient solar ponds (SGSPs) with internal heat exchanger were constructed and operated. In order to optimize the performance of the SGSPs, mixtures of NaCl and Na2SO4 were used. Radiation flux, temperature of the zones, ambient temperature, inlet, and outlet temperature of the internal heat exchangers were measured. It was shown a controlled amount of Na2SO4 improves the thermal and salinity stability of the pond in the normal operation and heat extraction and lowers the pond temperature drop ratio to the water outlet temperature drop during the heat extraction, which means an improvement in the energy storage capacity. The pond with higher percentage of Na2SO4 requires less time to stabilize. Higher percentage Na2SO4 reduces the density gradient between the upper and lower convective zones of the pond and leads to rapid destruction of the upper layer. Maximum ability of heat extraction corresponds to the pond with 0.75% Na2SO4. In addition, to prevent the algae growth at higher percentage Na2SO4, spraying of HCl on the pond surface was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A o :

External surface area of the heat exchanger (m2)

A SP :

Area of the solar pond (m2)

Cprel :

Ratio (specific heat capacity of fluid heat exchanger to specific heat capacity of fluid LCZ)

CPS :

Specific heat capacity of fluid LCZ \(\left( {{\text{J Kg}}^{ - 1} \;{^\circ }{\text{C}}} \right)\)

C PW :

Specific heat capacity of fluid heat exchanger \(\left( {{\text{JKg}}^{ - 1} \;{^\circ }{\text{C}}} \right)\)

G:

Solar radiation at the surface of the pond (W m-2)

HCl:

Hydrochloric acid

m lcz :

Mass of LCZ (Kg)

m rel :

Ratio of (mass flow rate in heat exchanger to mass of LCZ) (Kg)

w :

Mass flow rate in heat exchanger (Kg/ s)

n:

Heat extracted time intervals

NaCl:

Sodium chloride

Na2SO4 :

Sodium sulfate

PE:

Polyethylene

:

Rate of heat extraction from the LCZ per unit area of the solar pond (W/ m2)

T i :

Inlet temperature of the internal heat exchanger (°C)

T iw :

Initial temperature of heat exchanger (°C)

T o :

Outlet temperature of the internal heat exchanger (°C)

T ow :

Final Temperature of Heat exchanger (°C)

TP :

Temperature of pond (°C)

T P1 :

Initial temperature of LCZ (°C)

T P2 :

Final temperature of LCZ (°C)

U :

Overall heat transfer coefficient based on external surface area (W/ m2°C)

IHE:

Internal heat exchanger

JSUT:

Jundi-Shapur University of Technology

LCZ:

Lower convective zone

LHTES:

Latent heat thermal energy storage 

LLDPE:

Linear low density polyethylene

LMTD:

Logarithmic mean temperature difference

NCZ:

Non-convective zone

N:

Ratio in percentage number of salt combinations

PCM:

Phase change material

SHTES:

Sensible heat thermal energy storage

SGSP:

Salt gradient solar pond

TES:

Thermal energy storage

UCZ:

Upper convective zone

\(\eta\) :

Thermal Efficiency

ɛ:

Maximum ability for heat extraction

δsensor :

Sensor accuracy

δinstrument :

Measuring instrument accuracy

δtotal :

Total uncertainty

References

  1. Farahbod F, Mowla D, Nasr MJ, Soltanieh M. Experimental study of a solar desalination pond as second stage in proposed zero discharge desalination process. Sol Energy. 2013;97:138–46.

    Article  CAS  Google Scholar 

  2. Wu D, Liu H, Sun W. Experimental study of thermal characteristics for enhanced solar pond. J Dalian Univ Technol. 2013;5:005.

    CAS  Google Scholar 

  3. Nie Z, Bu L, Zheng M, Huang W. Experimental study of natural brine solar ponds in Tibet. Sol Energy. 2011;85(7):1537–42.

    Article  CAS  Google Scholar 

  4. Sakhrieh A, Al-Salaymeh A. Experimental and numerical investigations of salt gradient solar pond under Jordanian climate conditions. Energy Convers Manag. 2013;65:725–8.

    Article  CAS  Google Scholar 

  5. Wang H, Zou J, Cortina J, Kizito J. Experimental and theoretical study on temperature distribution of adding coal cinder to bottom of salt gradient solar pond. Sol Energy. 2014;110:756–67.

    Article  Google Scholar 

  6. Nakoa K, Rahaoui K, Date A, Akbarzadeh A. An experimental review on coupling of solar pond with membrane distillation. Sol Energy. 2015;119:319–31.

    Article  CAS  Google Scholar 

  7. Sayer AH, Al-Hussaini H, Campbell AN. New comprehensive investigation on the feasibility of the gel solar pond, and a comparison with the salinity gradient solar pond. Appl Therm Eng. 2018;130:672–83.

    Article  Google Scholar 

  8. Njoku HO, Agashi BE, Onyegegbu SO. A numerical study to predict the energy and exergy performances of a salinity gradient solar pond with thermal extraction. Sol Energy. 2017;157:744–61.

    Article  Google Scholar 

  9. Alcaraz A, Montalà M, Cortina J, Akbarzadeh A, Aladjem C, Farran A, et al. Design, construction, and operation of the first industrial salinity-gradient solar pond in Europe: an efficiency analysis perspective. Sol Energy. 2018;164:316–26.

    Article  Google Scholar 

  10. Ganguly S, Date A, Akbarzadeh A. Heat recovery from ground below the solar pond. Sol Energy. 2017;155:1254–60.

    Article  Google Scholar 

  11. Ganguly S, Jain R, Date A, Akbarzadeh A. On the addition of heat to solar pond from external sources. Sol Energy. 2017;144:111–6.

    Article  Google Scholar 

  12. Sayer AH, Monjezi AA, Campbell AN. Behaviour of a salinity gradient solar pond during two years and the impact of zonal thickness variation on its performance. Appl Therm Eng. 2018;130:1191–8.

    Article  Google Scholar 

  13. Hu Z, Li A, Gao R, Yin H. Enhanced heat transfer for PCM melting in the frustum-shaped unit with multiple PCMs. J Therm Anal Calorim. 2015;120(2):1407–16.

    Article  CAS  Google Scholar 

  14. Harikrishnan S, Deepak K, Kalaiselvam S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim. 2014;115(2):1563–71.

    Article  CAS  Google Scholar 

  15. Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S. Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111(1):279–88.

    Article  CAS  Google Scholar 

  16. Zeng J-L, Shu L, Jiang L-M, Chen Y-H, Zhang Y-X, Xie T, et al. Thermodynamic and thermal energy storage properties of a new medium-temperature phase change material. J Therm Anal Calorim. 2019;135(6):3171–9.

    Article  CAS  Google Scholar 

  17. Lafri D, Semmar D, Hamid A, Ouzzane M. Experimental investigation on combined sensible and latent heat storage in two different configurations of tank filled with PCM. Appl Therm Eng. 2019;149:625–32.

    Article  Google Scholar 

  18. Assari MR, Basirat Tabrizi H, Parvar M, Kavoosi Nejad A, Jafar Gholi Beik A. Experiment and optimization of mixed medium effect on small-scale salt gradient solar pond. Sol Energy. 2017;151:102–9.

    Article  Google Scholar 

  19. Alcaraz A, Valderrama C, Cortina J, Akbarzadeh A, Farran A. Enhancing the efficiency of solar pond heat extraction by using both lateral and bottom heat exchangers. Sol Energy. 2016;134:82–94.

    Article  Google Scholar 

  20. Assari MR, Basirat Tabrizi H, Jafar Gholi Beik A. Experimental studies on the effect of using phase change material in salinity-gradient solar pond. Solar energy. 2015;122:204–14.

    Article  Google Scholar 

  21. Assari MR, Basirat Tabrizi H, Kavoosi Nejad A, Parvar M. Experimental investigation of heat absorption of different solar pond shapes covered with glazing plastic. Sol Energy. 2015;122:569–78.

    Article  Google Scholar 

  22. Tatsidjodoung P, Le Pierrès N, Luo L. A review of potential materials for thermal energy storage in building applications. Renew Sustain Energy Rev. 2013;18:327–49.

    Article  Google Scholar 

  23. Sfarra S, Perilli S, Guerrini M, Bisegna F, Chen T, Ambrosini D. On the use of phase change materials applied on cork-coconut-cork panels. J Therm Anal Calorim. 2019;138(6):4061–90.

    Article  CAS  Google Scholar 

  24. Ekiciler R, Arslan K, Turgut O, Kurşun B. Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09717-5

    Article  Google Scholar 

  25. Acar MS, Arslan O. Energy and exergy analysis of solar energy-integrated, geothermal energy-powered Organic Rankine Cycle. J Therm Anal Calorim. 2019;137(2):659–66.

    Article  Google Scholar 

  26. Mohammadnia A, Rezania A, Ziapour BM, Sedaghati F, Rosendahl L. Hybrid energy harvesting system to maximize power generation from solar energy. Energy Convers Manag. 2020;205:112352.

    Article  Google Scholar 

  27. Mahdi MS, Mahood HB, Khadom AA, Campbell AN, Hasan M, Sharif AO. Experimental investigation of the thermal performance of a helical coil latent heat thermal energy storage for solar energy applications. Thermal Sci Eng Progress. 2019;10:287–98.

    Article  Google Scholar 

  28. Pradeep N, Paramasivam K, Rajesh T, Purusothamanan VS, Iyahraja S. Silver nanoparticles for enhanced thermal energy storage of phase change materials. Materials Today: Proceedings. 2020.

  29. Ines M, Paolo P, Roberto F, Mohamed S. Experimental studies on the effect of using phase change material in a salinity-gradient solar pond under a solar simulator. Sol Energy. 2019;186:335–46.

    Article  Google Scholar 

  30. Valderrama C, Gibert O, Arcal J, Solano P, Akbarzadeh A, Larrotcha E, et al. Solar energy storage by salinity gradient solar pond: pilot plant construction and gradient control. Desalination. 2011;279:445–50.

    Article  CAS  Google Scholar 

  31. Perry DL. Handbook of inorganic compounds. Boca Raton: CRC Press; 2016.

    Book  Google Scholar 

  32. https://en.wikipedia.org/wiki/Sodium_sulfate.

  33. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Progress Mater Sci. 2014;65:67–123.

    Article  CAS  Google Scholar 

  34. El-Dessouky H, Al-Juwayhel F. Effectiveness of a thermal energy storage system using phase-change materials. Energy Convers Manag. 1997;38:601–17.

    Article  CAS  Google Scholar 

  35. Sabetta F, Pacetti M, Principi P. An internal heat extraction system for solar ponds. Sol Energy. 1985;34(4–5):297–302.

    Article  Google Scholar 

  36. Leblanc J, Akbarzadeh A, Andrews J, Lu H, Golding P. Heat extraction methods from salinity-gradient solar ponds and introduction of a novel system of heat extraction for improved efficiency. Sol Energy. 2011;85(12):3103–42.

    Article  CAS  Google Scholar 

  37. Andrews J, Akbarzadeh A. Enhancing the thermal efficiency of solar ponds by extracting heat from the gradient layer. Sol Energy. 2005;78:704–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Assari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assari, M.R., Tahan, M.H., Jafar Gholi Beik, A. et al. Experimental study on thermal behavior of new mixed medium phase change material for improving productivity on salt gradient solar pond. J Therm Anal Calorim 147, 971–985 (2022). https://doi.org/10.1007/s10973-020-10317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10317-6

Keywords

Navigation